⑴ 经纬度坐标和地理坐标有什么不同,怎么转换
一看就不同啊,经纬度带度分秒上标和NESW的。
地理坐标系,也可称为真实世界的坐标系,是用于确定地物在地球上位置的坐标系。
一个特定的地理坐标系是由一个特定的椭球体和一种特定的地图投影构成,其中椭球体是一种对地球形状的数学描述,而地图投影是将球面坐标转换成平面坐标的数学方法。绝大多数的地图都是遵照一种已知的地理坐标系来显示坐标数据。
最常用的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何一点的位置,如果我们将地球看作一个球体,而经纬网就是加在地球表面的地理坐标参照系格网,经度和纬度是从地球中心对地球表面给定点量测得到的角度,经度是东西方向EW,而纬度是南北方向NS,经线从地球南北极穿过,而纬线是平行于赤道的环线
需要说明的是经纬度坐标系不是一种平面坐标系,因为度不是标准的长度单位,不可用其量侧面积长度
平面坐标系(又称笛卡儿坐标系),因其具有以下特性:可量测水平X方向和竖直Y方向的距离,可进行长度、角度和面积的量测,可用不同的数学公式将地球球体表面投影到二维平面上而得到广泛的应用,而每一个平面坐标系都有一特定的地图投影方法。
平面直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。这样,坐标系中就出现了四个象限。纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负
大地测量中以参考椭球面为基准面。地面点P的位置用大地经度L、大地纬度B和大地高H表示。当点在参考椭球面上时,仅用大地经度和大地纬度表示。
在地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。
⑵ 常用坐标系的相互转换
1.惯性坐标系(i系)-地球坐标系(e系)
如图3-2-3所示,地球直角坐标系0xeyeze为地固坐标系(简称e系),0xiyiyi为惯性坐标系(简称i系)。ω为地球自转角速度。
地球直角坐标系0xeyeze相对惯性参照系的转动角速度就是地球的自转角速度ω。
航空重力勘探理论方法及应用
则有e系至i系的坐标变换矩阵为:
航空重力勘探理论方法及应用
2.地球坐标系(e系)-当地地理坐标系(n系)
如图3-2-4所示,地理坐标系的原点就是载体所在点,zn轴沿当地参考椭球的法线指向向外,xn轴与yn轴均与zn垂直;即在当地水平面内,xn轴沿当地纬度线指向正东,yn轴沿当地子午线指向正北。按照这样的定义,地理坐标系的zn轴与地球赤道平面的夹角就是当地地理纬度,zn轴与yn轴构成的平面就是当地子午面。zn轴与xn轴构成的平面就是当地卯酉面。xn轴与yn轴构成的平面就是当地水平面。
地理坐标系的三根轴可以有不同的选取方法。图3-2-5所示的地理坐标系是按“东、北、天”为顺序构成的右手直角坐标系。除此之外,还有按“北、西、天”或“北、东、地”为顺序构成的右手直角坐标系。
图3-2-4 地球坐标系与当地地理坐标系
图3-2-5 载体运动引起的地理坐标系转动
地球坐标系先绕ze转动λ角,得到0ex’y’ze,再绕y’转动(270°-φ),即得到当地地理坐标系(Gopal M,1984)。因此地球坐标系与当地地理坐标系之间的转换矩阵
航空重力勘探理论方法及应用
式中:φ为地理纬度;λ为地理经度。
当载体在地球表面运动时,载体相对地球的位置不断发生变化,地球上不同地点的地理坐标系相对地球的角位置是不同的。也就是说,载体的运动将引起地理坐标系相对地球坐标系转动。如果考察地理坐标系相对惯性坐标系的转动角速度,应当考虑两种因素:一是地理坐标系随载体运动时相对地球坐标系的转动角速度;二是地球坐标系相对惯性参照系的转动角速度。
假设载体沿水平面航行(如飞机),所在地点的纬度为φ,航速为v,航向为H。将航速分解为沿地理坐标系北东两个分量:
航空重力勘探理论方法及应用
航速的北分量vN引起地理坐标系绕着平行于地理东西方向的地心轴相对地球转动,其转动角速度为(见图3-2-5):
航空重力勘探理论方法及应用
航速的东向分量vE引起地理坐标系绕着极轴相对地球转动,其转动角速度为:
航空重力勘探理论方法及应用
参考椭球上各点的子午圈半径RM和卯酉圈半径RN的计算公式为:
航空重力勘探理论方法及应用
式中:R为参考椭球的地球长半径;e为参考椭球的第一偏心率。
将角速度
航空重力勘探理论方法及应用
式中:
地球坐标系相对惯性参照系的转动是地球自转引起的。把地球自转角速度ω平移到地理坐标系的原点,并投影到地理坐标系的各轴上,可得:
航空重力勘探理论方法及应用
上式表明,地球自转将引起地理坐标系绕地理北向和垂线方向相对惯性参照系转动。
综合考虑地球自转和载体的航行影响,地理坐标系相对惯性参考系的转动角速度在地理坐标系各轴上的投影表达式为:
航空重力勘探理论方法及应用
在分析陀螺仪和惯性导航系统时,地理坐标系是要经常使用的坐标系。例如,陀螺罗经用来重现子午面,其运动和误差就是相对地理坐标系而言的。在指北方位平台式惯导中,采用地理坐标系作为导航坐标系,平台所模拟的就是地理坐标系。
3.当地地理坐标系(n系)-载体坐标系(b系)
当地地理坐标系可通过绕载体坐标系Zb轴转动方位角A、绕yb轴转动俯仰角θ,和绕xb轴转动滚动角φ来实现其到载体坐标系的转换(捷联惯性导航技术,张天光等译),三次转动可以用数学方法表述3个独立的方向余弦矩阵,定义如下:
绕载体坐标系z轴转动方位角A,有:
航空重力勘探理论方法及应用
绕载体坐标系y轴转动方位角θ,有:
航空重力勘探理论方法及应用
绕载体坐标系x轴转动方位角φ,有:
航空重力勘探理论方法及应用
因此,当地地理坐标系(n系)到载体坐标系的变换可以用这3个独立变换的乘积表示如下:
航空重力勘探理论方法及应用
所以转换矩阵
航空重力勘探理论方法及应用
在平台式惯性导航系统中,或通过3个框架之间的角度传感器测量方位角A、俯仰角θ和滚动角φ。
⑶ 坐标系换算
首先,用户需要明白一点,由于不同的坐标系对应不同的旋转椭球体,所以转换坐标系又包括两种情况:同一基准面下的坐标转换和不同基准面下的坐标转换。
1.同一基准面下的坐标转换
何为同一椭球面下的转换?它的意思为将一个投影坐标系转为一个地理坐标系,而这个投影坐标系又是基于该坐标系所得来的(若读者不太明白投影坐标和地理坐标之间的联系,可参考“投影坐标系和地理坐标系之间的关系”这篇文章),例如,将Xian_1980_GK_CM_117E投影坐标转换为GCS_Xian_1980地理坐标。
此时,可以只使用开篇所说的【投影】工具进行坐标转换。在【ArcToolbox】中双击【数据管理工具】→【投影和变换】→【投影】,打开【投影】对话框如下图所示(以矢量数据为例,栅格数据要用【投影栅格】工具)。然后输入数据,并设置输出坐标及数据路径即可。
不同坐标系之间的转换
当然,如果数据量庞大的话,也可以使用该工具集中的【批量投影】脚本工具,以提高数据处理的效率。
2.不同基准面下的坐标转换
对应上述概念,不同基准面下的坐标转换怎么做到呢?例如将Xian_1980_GK_CM_117E投影坐标转换为Beijing_1954_GK_Zone_19N投影坐标系。不同基准面下的坐标转换主要分为两步:
①创建一个自定义地理(坐标)变换。
在【ArcToolbox】中双击【数据管理工具】→【投影和变换】→【创建自定义地理(坐标)变换】,设置如下:
不同坐标系之间的转换
②投影变换。
参考同一基准面下坐标变换的步骤。
⑷ 经纬度坐标和地理坐标有什么不同,怎么转换
在大地测量学中,坐标系分为两大类:地心坐标系和参心坐标系.
地心坐标系是坐标系原点与地球质心重合的坐标系,参心坐标系是坐标系原点位于参考椭球体中心,但不与地球质心重合的坐标系.
我国使用的1954北京坐标系,1980西安坐标系都属于参心坐标系.GPS中使用的世界大地坐标系WGS-84属于地心坐标系,我国最近开始启用的中国大地坐标系2000(即CGCS2000),也属于地心坐标系.
以上两大类坐标系都有下列几种表达形式:
1.空间大地坐标系,即大地经纬度(B,L,H)形式
2.空间直角坐标系,即三维空间坐标(X,Y,Z)形式
3.投影平面直角坐标系.即二维平面坐标(x,y,h)形式
在工程测量和施工中,我国普遍使用的是1954北京或1980西安的高斯投影平面直角坐标系.
但为满足工程施工精度要求,通常会在测区建立独立的地方坐标系,且独立地方坐标系都能够通过转换公式换算为国家统一的坐标系上,如1954北京坐标系或1980西安坐标系.楼主说的施工图纸上面标的那个是测量坐标可能是
国家平面直角坐标系和独立的地方平面坐标系之一.
⑸ 坐标数据文件转换生成shp文件时为什么要设置地理坐标系
没必要必须设置,但是地理数据都是有位置信息的,一般都会有一个坐标信息,否则数据就没有意义
⑹ 地理坐标系和大地坐标系的区别
一、性质不同
1、地理坐标系(GeographicCoordinateSystem),是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。
2、大地坐标系是大地测量中以参考椭球面为基准面建立起来的坐标系。
二、作用不同
1、地理坐标系:定义了地表点位的经纬度,并且根据其所采用的参考椭球体参数还可求得点位的绝对高程值。
2、大地坐标系:是大地测量的基本坐标系,它是大地测量计算,地球形状大小研究和地图编制等的基础。
(6)为什么要进行地理坐标系转换扩展阅读
我国大地坐标系经历了几次重要变化。
1、建国初期,为满足国家经济建设和国防建设的急需,在天文大地网边布设边平差的基础上建立了1954北京坐标系。
2、20世纪80年代,在全国天文大地网整体平差的基础上建成了1980西安坐标系。
3、20世纪末至21世纪初,在中国地壳运动观测网络、全国UPS一/二级网和全国UPSA/B级网等整体平差的基础上又建成了新一代国家大地坐标系—2000中国大地坐标系。
⑺ 什么时候用地理坐标系,什么时候用投影坐
在野外用地理坐标系,整理资料包括剖面还有储量计算什么,都要投影。
地理坐标系:为球面坐标。 参考平面地是椭球面,坐标单位:经纬度;
投影坐标系:为平面坐标。参考平面地是水平面,坐标单位:米、千米等;
地理坐标转换到投影坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面)
⑻ 地理坐标的种类
地理坐标
科普中国 | 本词条由“科普中国”科学网络词条编写与应用工作项目审核
地理坐标是用纬度、经度表示地面点位置的球面坐标。地理坐标系以地轴为极轴,所有通过地球南北极的平面均称为子午面。地理坐标,就是用经纬度表示地面点位的球面坐标。在大地测量学中,对于地理坐标系统中的经纬度有三种提法:天文经纬度、大地经纬度和地心经纬度。[1]
中文名
地理坐标
外文名
Geographic Coordinates
适用学科
大地测量学
应用领域
测绘科学与技术
组成要素
纬度,经度
快速
导航
分类
应用
定义
子午面与地球椭球面的交线,称为经线或子午线。国际上统一规定以通过英国伦敦格林威治天文台的经线为起始经线(0°),也叫本初子午线。从起始经线开始,向东、西各以180°计算,向东称东经,向西称西经。所有通过地轴的平面,都和地球表面相交而成为(椭)圆,这就是经线圈,每个经线圈都包括两条相差180度的经线。所有经线都在两极交会,呈南北方向,长度也彼此相等。经差1°在赤道上的纬线长约111km[2] 。
所有垂直于地轴的平面与地球椭球面的交线,称为纬线。赤道纬度为零,赤道以北为北纬,以南为南纬,向北向南各分90°。纬度不同的纬线长度不相等。经差1°的纬线弧长为111cosB(km),式中B为纬度[2] 。
经纬线相互交织构成经纬网,以经度、纬度表示地面上点的位置的球面坐标称为地理坐标。例如:我国首都北京位于北纬40度和东经116度的交点附近,昆明位于北纬25度和东经103度的交点附近。
由地球椭球体上任一点引一垂直于该点地平线的直线,其与赤道面相交所构成的夹角称为地理纬度。任一点所在经线圈与起始经线圈间的夹角称为该点的地理经度。地球上或地图上的点位表示为M(L,B)。在地图上以内图廓和经纬网(或分度带)形式表示。在大于1∶10万地形图上,地理坐标网以图廓形式表现,图廓四角注记经纬度数值,内外图廓间绘有分度带。在小比例尺地图上和小于1∶20万地形图上,一般都直接绘有地理坐标网,并注有相应的经纬度数值,以此确定地区或地面点的地理位置。
分类
地理坐标分为天文坐标系、大地坐标系与地心坐标系。
(1)天文坐标系
天文坐标系是以铅垂线为基准、以大地水准面为基准面建立的坐标系,它以天文经纬度(λ,ψ)表示地面点在大地水准面上的位置,其中天文经度λ是观测点天顶子午面与格林尼治天顶子午面间的二面角,地球上定义为本初子午面与观测点之间的二面角;天文纬度ψ定义为铅垂线与赤道平面间的夹角。
(2)大地坐标系
大地坐标系是以椭球面法线为基准线,以参考椭球面为基准面建立的坐标系,它以大地坐标(L,B,h)表示地面点在参考椭球面上的位置,其中大地经度L为参考椭球面上某点的大地子午面与本初子午面间的二面角,大地纬度B为参考椭球面上某点的法线与赤道平面的夹角,北纬为正,南纬为负;为h为大地高,即从观测点沿椭球法线方向到椭球面的距离[3] 。我国常用坐标系为1954北京坐标系、1980国家大地坐标系以及2000国家大地坐标系(CGCS2000)。
(3)地心坐标系
地心坐标系是地固坐标系的一种,是指以总地球椭球为基准、原点与质心重合的坐标系,它与地球体固连在一起,与地球同步运动。[3] 它以(L,B)来表示点的位置,其中L为地心经度,与大地经度一致;B为地心纬度,指参考椭球面上观测点与椭球质心或中心连线与赤道面之间的夹角。
应用
随着高科技的发展,人们对确定空中目标位置的准确性提出了更高的要求,例如雷达监测目标位置的地理坐标已经广泛应用于各种科技领域。然而在实际应用中,针对不同的设计计算需求,结合各种坐标系的特点,必须对地理坐标进行转换,以便于利用和进行辅助决策。例如,在大地测量学中,常用天文经纬度定义地理坐标;地图学中以大地经纬度定义地理坐标,而在地图学研究及地图学的小比例尺制图中,通常将椭球体当成正球体,采用地心经纬度。
参考资料
[1] 朱良 韩雪培.新编地图学教程.高等教育出版社,2008.4
[2] 王光霞.地图设计与编绘.测绘出版社,2011年
[3] 孔祥元,郭际明,刘宗泉.大地测量学基础.武汉大学出版社,2016年
⑼ 地理直角坐标 经纬度 转换
你这是GPS换算啊。。。真是麻烦的题目,我找了一下方法
能方便快捷性地测定出点位坐标,无论是操作上还是精度上,比全站仪等其他常规测量设备有明显的优越性。随着我国各地GPS差分台站的不断建立以及美国SA政策的取消,使得单机定位的精度大大提高,有的已经达到了亚米级精度,能够满足国土资源调查、土地利用更新、遥感监测、海域使用权清查等工作的应用。在一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系(以下分别简称54系和80系),而GPS测定http://www.inyue.net的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS定位操作非常容易,但坐标转换则难以掌握,EXCEL是比较普及的电子表格软件,能够处理较复杂的数学运算,用它来进行GPS坐标转换、面积计算会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL进行换算的方法和GPS坐标转换方法。
一、用EXCEL进行高斯投影换算
从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。笔者发现,用EXCEL可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL的相应单元格中输入相应的公式即可。下面以54系为例,介绍具体的计算方法。
完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下:
单元格
单元格内容
说明
A2
输入中央子午线,以度.分秒形式输入,如115度30分则输入115.30
起算数据L0
B2
=INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2*100)*100)/3600
把L0化成度
C2
以度小数形式输入纬度值,如38°14′20〃则输入38.1420
起算数据B
D2
以度小数形式输入经度值
起算数据L
E2
=INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2*100)*100)/3600
把B化成度
F2
=INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2*100)*100)/3600
把L化成度
G2
=F2-B2
L-L0
H2
=G2/57.2957795130823
化作弧度
I2
=TAN(RADIANS(E2))
Tan(B)
J2
=COS(RADIANS(E2))
COS(B)
K2
=0.006738525415*J2*J2
L2
=I2*I2
M2
=1+K2
N2
=6399698.9018/SQRT(M2)
O2
=H2*H2*J2*J2
P2
=I2*J2
Q2
=P2*P2
R2
=(32005.78006+Q2*(133.92133+Q2*0.7031))
S2
=6367558.49686*E2/57.29577951308-P2*J2*R2+((((L2-58)*L2+61)*
O2/30+(4*K2+5)*M2-L2)*O2/12+1)*N2*I2*O2/2
计算结果X
T2
=((((L2-18)*L2-(58*L2-14)*K2+5)*O2/20+M2-L2)*O2/6+1)*N2*(H2*J2)
计算结果Y
表中公式的来源及EXCEL软件的操作方法,请参阅有关资料,这里不再赘述。按上面表格中的公式输入到相应单元格后,就可方便地由经纬度求得平面直角坐标。当输入完所有的经纬度后,用鼠标下拉即可得到所有的计算结果。表中的许多单元格公式为中间过程,可以用EXCEL的列隐藏功能把这些没有必要显示的列隐藏起来,表面上形成标准的计算报表,使整个计算表简单明了。从理论上讲,可计算的数据量是无限的,当第一次输入公式后,相当于自己完成了一软件的编制,可另存起来供今后重复使用,一劳永逸。
二、GPS坐标转换方法与面积计算
GPS所采用的坐标系是美国国防部1984世界坐标系,简称WGS-84,它是一个协议地球参考系,坐标系原点在地球质心。GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。由此可见,必须将WGS-84坐标进行坐标系转换才能供标图使用。坐标系之间的转换一般采用七参数法或三参数法,其中七参数为X平移、Y平移、Z平移、X旋转、Y旋转、Z旋转以及尺度比参数,若忽略旋转参数和尺度比参数则为三参数方法,三参数法为七参数法的特例。这里的Z、Y、Z是空间大地直角坐标系坐标,为转换过程的中间值。在实际工作中我们常用http://www.chong123.cn的是平面直角坐标,是否可以跳过空间直角坐标系,省略复杂的运算,进行简单转换呢?为此,笔者进行了长期的实践,证明是可行的。其在原理是:不把GPS所测定的WGS-84坐标当作WGS-84坐标,而是当作具有一定系统性误差的54系坐标值,然后通过国家已知点纠正,消除该系统误差。我们暂把该方法称作坐标改正法,下面以WGS-84坐标转换成54系坐标为例,介绍数据处理方法:
首先,在测区附近选择一国家已知点,在该已知点上用GPS测定WGPS-84坐标系经纬度B和L,把此坐标视为有误差的54系坐标,利用54系EXCEL将经纬度BL转换成平面直角坐标X’Y’,然后与已知坐标比较则可计算出偏移量:
△X=X-X’
△Y=Y-Y’
式中的X、Y为国家控制点的已知坐标,X’、Y’为测定坐标,△X和△Y为偏移量。
求得偏移量后,就可以用此偏移量纠正测区内的其他测量点了。把其他GPS测量点的经纬度测量值,转换成平面坐标X’Y’,在此XY坐标值上直接加上偏移值就得到了转换后的54系坐标:
X=X’+△X
Y=Y’+△Y
在上述EXCEL计算表的最后两列,附加上求得的改正数并分别与计算出来的XY相加后,即得到转换结果。若测量路线是一闭合区域的话,可把计算结果按路线顺序排列起来,再输入相应的计算公式,即可计算出该区域的面积。有关用坐标计算面积的原理与公式,这里不再叙述,读者可参阅有关资料。需要说明的是,面积的计算精度基本上不受坐标转换精度的影响,若只需要求算面积的话,可不进行坐标系转换这一步,只需要把BL化成XY就行了。
就1:1万比例尺成图而言,在一般的县行政区范围内(如40Km×40Km),用此简单的坐标改正法进行转换与较复杂的七参数法没有多大差别。能否满足1:1万比例尺变更调查的要求,主要取决于GPS接收机本身的精度,与转换方法的选择关系不大。当面积较大时,使用该方法可能会使误差增大,这时可考虑分区域转换。
汗,希望对你有帮助,这个实在太麻烦了
⑽ 关于地理坐标转换
首先,把需要转的坐标按照两列复制到excel中,第一列为横坐标,第二列为纵坐标,保存退出;
其次,运行arcmap,添加上一步保存的excel文件,并通过arcmap软件菜单中tools下面的add events layers(添加事件图层)工具,将该excel文件变为图形显示,并另存为shape文件;
再次,对该shape文件定义投影(即该坐标对应的投影,似乎这些数据是高斯投影的),然后再做投影变换,将其变换为地理投影(geographic coordinate system)
最后,在arctoolbox中找到add data coordinate工具,即可计算出经纬度