Ⅰ 什么是 BIM,它的具体作用是什么
BIM的英文全称是Building Information Modeling,是指建筑信息化模型。
BIM是一个完备的信息模型,能够将工程项目在全生命周期中各个不同阶段的工程信息、过程和资源集成在一个模型中,方便的被工程各参与方使用。
建筑信息的数据在BIM中的存储,主要以各种数字技术为依托,从而以这个数字信息模型作为各个建筑项目的基础,去进行各个相关工作 。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因此这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型。将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,例如:建筑物的日照、外部维护结构的传热状态等。
Ⅱ BIM对抗震救灾有什么建设性的作用吗
BIM在抗震方面作用还是很大的。
主要体现在快速建模和数据共享上。
一、地震的不可难预测及不可抗性,导致建筑防震抗震要求大大提高。而建筑结构设计的合理性直接影响着建筑的抗震性能和质量。通过BIM与IOT的结合,实现数据共享,应用可视化的数字模型对建筑结构模拟分析,最大程度上提升建筑结构设计水平,有效提高了抗震设计的性能和质量,保障建筑的施工的质量和安全。
二、BIM与地理信息系统(GIS)和虚拟现实(VR)相结合,通过获取震区数字影像,结合灾区相关路网、地形图、地震垮塌工点、正射影像、震中位置、附近活动断裂带等信息,快速搭建震区三维BIM 模型,快速评估灾情。利用BIM 模型数据,在线查看地形、影像及灾情,以协同工作模式及时更新最新灾情调查数据。可实时联动地方查看现场情况,通过前后对比,清晰直观了解震区灾情,从而制定救灾方案、打通生命通道,为灾后救援"黄金72 小时”争分夺秒,大大减少了由自然灾害造成的损失。
三、BIM 技术与无人机航测、遥感(RS)、GIS、VR、大数据、人工智能等技术相结合,显着提高了抢险救灾实时性和实用性,在地质灾害的监测预报、震害防御、抢险救灾应急、制定救灾方案与重建等领域发挥越来越重要的作用。
来源于网页链接
Ⅲ bim的概念,在设计行业中,主要应用在哪些方面
整个建筑行业的发展是迅速和具有科技性的,从传统的手工绘图、手工计算及手工设计整个人工过程过度到了CAD技术的普及及推广,也让众多建筑设计师、预算师从“手工”行列解放了出来,而现在,建筑信息模型(BIM)的出现将引发工程建设领域的第二次数字革命。BIM软件不仅带来现有技术的进步和更新换代,也会影响生产组织模式和管理方式的变革,并将推动人们思维模式的转变。BIM技术目前都应用在哪些领域呢?
在国内建筑市场,BIM目前多应用在以下领域:
1.BIM模型维护
BIM模型维护是指根据项目建设进度建立和维护BIM模型,使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并将得到的信息结合三维模型进行整理和储存,以备项目全过程中项目各相关利益方随时共享。
BIM的用途决定了BIM模型细节的精度,但仅靠一个BIM工具并不能完成所有的工作。所以,目前业内主要采用“分布式”BIM模型的方法,建立符合工程项目现有条件和使用用途的BIM模型。这些模型根据需要大致可分为:设计模型、施工模型、进度模型、成本模型、制造模型、操作模型等。
2.场地分析
场地分析是研究影响建筑物定位的主要因素,是确定建筑物的空间方位和外观、建立建筑物与周围景观的联系的过程。在规划阶段,场地的地貌、植被、气候条件都是影响设计决策的重要因素,往往需要通过场地分析来对景观规划、环境现状、施工配套及建成后交通流量等各种影响因素进行评价及分析。
传统的场地分析存在诸如定量分析不足、主观因素过重、无法处理大量数据信息等弊端。通过BIM结合地理信息系统(简称GIS)对场地及拟建的建筑物空间数据进行建模,可迅速得出较准确的分析结果,帮助项目在规划阶段评估场地的使用条件和特点,从而作出新建项目最理想的场地规划、交通流线组织关系、建筑布局等关键决策。
3.建筑策划
建筑策划是在总体规划目标确定后,根据定量分析得出设计依据的过程。建筑策划利用对建设目标所处社会环境及相关因素的逻辑数理分析,研究项目任务书对设计的合理导向,制定和论证建筑设计依据,科学地确定设计的内容,并寻找达到这一目标的科学方法。在这一过程中,除了运用建筑学的原理,借鉴过去的经验和遵守规范,更重要的是要以实态调查为基础,用计算机等现代化手段对目标进行研究。BIM能够帮助项目团队在建筑规划阶段,通过对空间进行分析来理解复杂空间的标准和法规,从而节省时间,并提供对团队更多增值活动的可能。特别是在客户讨论需求、选择以及分析最佳方案时,能借助BIM及相关分析数据,作出关键性的决定。
BIM在建筑策划阶段的应用成果还可以帮助建筑师在建筑设计阶段随时查看初步设计是否符合业主的要求,是否满足建筑策划阶段得到的设计依据,通过BIM连贯的信息传递或追溯,大大减少之后详图设计阶段发现问题需要修改设计的巨大浪费。
4.方案论证
在方案论证阶段,项目投资方可以使用BIM来评估设计方案的布局、视野、照明、安全、人体工程学、声学、纹理、色彩及规范的遵守情况。BIM甚至可以做到建筑局部的细节推敲,迅速分析设计和施工中可能需要应对的问题。
方案论证阶段还可以借助BIM提供方便的、低成本的不同解决方案供项目投资方进行选择,通过数据对比和模拟分析,找出不同解决方案的优缺点,帮助项目投资方迅速评估建筑投资方案的成本和时间。
对设计师来说,通过BIM来评估所设计的空间,可以获得较高的互动效应,以便从使用者和业主方获得积极的反馈。设计的实时修改往往基于最终用户的反馈,在BIM平台下,项目各方关注的焦点问题比较容易得到直观的展现并迅速达成共识,相应地,需要决策的时间也会减少。
5.可视化设计
3Dmax、Sketchup这些三维可视化设计软件的出现有力地弥补了业主及最终用户因缺乏对传统建筑图纸的理解能力而造成的和设计师之间的交流鸿沟,但由于这些软件设计理念和功能上的局限,使得这样的三维可视化展现不论用于前期方案推敲还是用于阶段性的效果图展现,与真正的设计方案之间都存在相当大的差距。
对于设计师而言,除了用于前期推敲和阶段展现,大量的设计工作还是要基于传统CAD平台,使用平、立、剖等三视图的方式表达和展现自己的设计成果。这种由于工具原因造成的信息割裂,在遇到项目复杂、工期紧的情况下,非常容易出错。
BIM的出现使得设计师不仅拥有了三维可视化的设计工具,所见即所得,更重要的是通过工具的提升,使设计师能使用三维的思考方式来完成建筑设计,同时,也使业主及最终用户真正摆脱技术壁垒的限制,随时知道自己的投资能获得什么。
6.协同设计
协同设计是一种新兴的建筑设计方式,它可以使分布在不同地理位置的不同专业的设计人员通过网络的协同展开设计工作。现有的协同设计主要是基于CAD平台,并不能充分实现专业间的信息交流,这是因为CAD的通用文件格式仅仅是对图形的描述,无法加载附加信息,导致专业间的数据不具有关联性。
BIM使得协同不再是简单的文件参照,BIM技术为协同设计提供底层支撑,大幅提升协同设计的技术含量。借助BIM的技术优势,协同的范畴也从单纯的设计阶段扩展到建筑全生命周期,需要规划、设计、施工、运营等各方的集体参与,因此具备了更广泛的意义,带来综合效益的大幅提升。
7.性能化分析
利用计算机进行建筑物理性能化分析始于20世纪60年代甚至更早在CAD时代,无论什么样的分析软件都必须通过手工的方式输入相关数据才能开展分析计算,而操作和使用这些软件不仅需要专业技术人员经过培训才能完成,同时由于设计方案的调整,造成原本就耗时耗力的数据录入工作需要经常性的重复录入或者校核,导致包括建筑能量分析在内的建筑物理性能化分析通常被安排在设计的最终阶段,成为一种象征性的工作,使建筑设计与性能化分析计算之间严重脱节。
利用BIM技术,建筑师在设计过程中创建的虚拟建筑模型已经包含了大量的设计信息(几何信息、材料性能、构件属性等),只要将模型导入相关的性能化分析软件,就可以得到相应的分析结果,原本需要专业人士花费大量时间输入大量专业数据的过程,通过BIM技术可以自动完成,大大降低了性能化分析的周期,提高了设计质量,同时,也使设计公司能够为业主提供更专业的技能和服务。
8.工程量统计
BIM是一个富含工程信息的数据库,可以真实地提供造价管理需要的工程量信息,借助这些信息,计算机可以快速对各种构件进行统计分析,大大减少了繁琐的人工操作和潜在错误,非常容易实现工程量信息与设计方案的完全一致。
通过BIM获得的准确的工程量统计可以用于前期设计过程中的成本估算、在业主预算范围内不同设计方案的探索或者不同设计方案建造成本的比较以及施工开始前的工程量预算和施工完成后的工程量决算。
9.管线综合
随着建筑物规模和使用功能复杂程度的增加,无论设计企业还是施工企业甚至是业主对机电管线综合的要求愈加强烈。利用BIM技术,通过搭建各专业的BIM模型,设计师能够在虚拟的三维环境下方便地发现设计中的碰撞冲突,从而大大提高了管线综合的设计能力和工作效率。这不仅能及时排除项目施工环节中可能遇到的碰撞冲突,显着减少由此产生的变更申请单,更大大提高了施工现场的生产效率,降低了由于施工协调造成的成本增长和工期延误。
10. 施工进度模拟
建筑施工是一个高度动态的过程,随着建筑工程规模不断扩大,复杂程度不断提高,使得施工项目管理变得极为复杂。
通过将BIM与施工进度计划相链接,将空间信息与时间信息整合在一个可视的4D(3D+Time)模型中,可以直观、精确地反映整个建筑的施工过程。4D施工模拟技术可以在项目建造过程中合理制定施工计划、精确掌握施工进度,优化使用施工资源以及科学地进行场地布置,对整个工程的施工进度、资源和质量进行统一管理和控制,以缩短工期、降低成本、提高质量。
此外,借助4D模型,施工企业在工程项目投标中将获得竞标优势,BIM可以协助评标专家从4D模型中很快了解投标单位对投标项目主要施工的控制方法、施工安排是否均衡、总体计划是否基本合理等,从而对投标单位的施工经验和实力作出有效评估。
11.施工组织模拟
施工组织是对施工活动实行科学管理的重要手段,它决定了各阶段的施工准备工作内容,协调了施工过程中各施工单位、各施工工种、各项资源之间的相互关系。施工组织设计是用来指导施工项目全过程各项活动的技术、经济和组织的综合性解决方案,是施工技术与施工项目管理有机结合的产物。
通过BIM可以对项目的重点或难点部分进行可建性模拟,按月、日、时进行施工安装方案的分析优化。对于一些重要的施工环节或采用新施工工艺的关键部位、施工现场平面布置等施工指导措施进行模拟和分析,以提高计划的可行性;也可以利用BIM技术结合施工组织计划进行预演以提高复杂建筑体系的可造性
借助BIM对施工组织的模拟,项目管理方能够非常直观地了解整个施工安装环节的时间节点和安装工序,并清晰把握在安装过程中的难点和要点,施工方也可以进一步对原有安装方案进行优化和改善,以提高施工效率和施工方案的安全性。
12.数字化建造
制造行业目前的生产效率极高,其中部分原因是利用数字化数据模型实现了制造方法的自动化。同样,BIM结合数字化制造也能够提高建筑行业的生产效率。通过BIM模型与数字化建造系统的结合,建筑行业也可以采用类似的方法来实现建筑施工流程的自动化。
建筑中的许多构件可以异地加工,然后运到建筑施工现场,装配到建筑中(例如门窗、预制混凝土结构和钢结构等构件)。通过数字化建造,可以自动完成建筑物构件的预制,这些通过工厂精密机械技术制造出来的构件不仅降低了建造误差,并且大幅度提高构件制造的生产率,使得整个建筑建造的工期缩短并且容易掌控。
BIM模型直接应用于制造环节,可以在制造商与设计人员之间形成一种自然的反馈循环,即在建筑设计流程中提前考虑尽可能多地实现数字化建造。同样,与参与竞标的制造商共享构件模型也有助于缩短招标周期,便于制造商根据设计要求的构件用量编制更为统一的投标文件。同时,标准化构件之间的协调也有助于减少现场发生的问题,降低不断上升的建造、安装成本。
随着建筑行业标准化、工厂化、数字化水平的提升,以及建筑使用设备复杂性的提高,越来越多的建筑及设备构件通过工厂加工并运送到施工现场进行高效的组装。而这些建筑构件及设备是否能够及时运到现场、是否满足设计要求、质量是否合格将成为整个建筑施工建造过程中影响施工计划关键路径的重要环节。
在BIM出现以前,建筑行业往往借助较为成熟的物流行业的管理经验及技术方案(例如RFID无线射频识别电子标签)。通过RFID可以把建筑物内各个设备构件贴上标签,以实现对这些物体的跟踪管理,但RFID本身无法进一步获取物体更详细的信息(如生产日期、生产厂家、构件尺寸等),而BIM模型恰好详细记录了建筑物及构件和设备的所有信息。
此外,BIM模型作为建筑物的多维度数据库,并不擅长记录各种构件的状态信息,而基于RFID技术的物流管理信息系统对物体的过程信息有非常好的数据库记录和管理功能,这样BIM与RFID正好互补,从而可以解决建筑行业对日益增长的物料跟踪带来的管理压力。
13.竣工模型交付
建筑作为一个系统,当完成建造过程准备投入使用时,首先需要对建筑进行必要的测试和调整,以确保它可以按照当初的设计来运营。在项目完成后的移交环节,物业管理部门需要得到的不只是常规的设计图纸、竣工图纸,还需要能正确反映真实的设备状态、材料安装使用情况等与运营维护相关的文档和资料。
BIM能将建筑物空间信息和设备参数信息有机地整合起来,从而为业主获取完整的建筑物全局信息提供途径。通过BIM与施工过程记录信息的关联,甚至能够实现包括隐蔽工程资料在内的竣工信息集成,不仅为后续的物业管理带来便利,并且可以在未来进行的翻新、改造、扩建过程中为业主及项目团队提供有效的历史信息。
14.维护计划
在建筑物使用寿命期间,建筑物结构设施(如墙、楼板、屋顶等)和设备设施(如设备、管道等)都需要不断得到维护。一个成功的维护方案将提高建筑物性能,降低能耗和修理费用,进而降低总体维护成本。
BIM模型结合运营维护管理系统可以充分发挥空间定位和数据记录的优势,合理制定维护计划,分配专人专项维护工作,以降低建筑物在使用过程中出现突发状况的概率。对一些重要设备还可以跟踪其维护工作的历史记录,以便对设备的适用状态提前作出判断。
15.资产管理
一套有序的资产管理系统将有效提升建筑资产或设施的管理水平,但由于建筑施工和运营的信息割裂,使得这些资产信息需要在运营初期依赖大量的人工操作来录入,而且很容易出现数据录入错误。
BIM中包含的大量建筑信息能够顺利导入资产管理系统,大大减少了系统初始化在数据准备方面的时间及人力投入。此外,由于传统的资产管理系统本身无法准确定位资产位置,通过BIM结合RFID的资产标签芯片还可以使资产在建筑物中的定位及相关参数信息一目了然。
16.空间管理
空间管理是为节省空间成本、有效利用空间、为最终用户提供良好的工作生活环境而对建筑空间所进行的管理。BIM不仅可以用于有效管理建筑设施及资产等资源,也可以帮助管理团队记录空间使用情况,处理最终用户要求空间变更的请求,分析现有空间的使用情况,合理分配建筑物空间,确保对空间资源的最大利用。
17.建筑系统分析
建筑系统分析是对照业主使用需求及设计规定来衡量建筑物性能的过程,包括机械系统如何操作和对建筑物能耗分析、内外部气流模拟、照明分析、人流分析等涉及建筑物性能的评估。
BIM结合专业的建筑物系统分析软件,避免了重复建立模型和采集系统参数。通过BIM可以验证建筑物是否按照特定的设计规定和可持续标准建造,通过这些分析模拟,最终确定、修改系统参数甚至系统改造计划,以提高整个建筑的性能。
18.灾难应急模拟
利用BIM及相应灾害分析模拟软件,可以在灾害发生前模拟灾害发生的过程,分析灾害发生的原因,制定避免灾害发生的措施以及发生灾害后人员疏散、救援支持的应急预案。
当灾害发生后,BIM模型可以提供救援人员紧急状况点的完整信息,与通过与楼宇自动化系统及时获取建筑物及设备的状态信息相结合,BIM模型能清晰地呈现出建筑物内部紧急状况的位置,甚至找到到达紧急状况点最合适的路线,提高应急行动的成效。
Ⅳ bim建模应用主要包括哪些方面
1.BIM模型维护
BIM模型维护是指根据项目建设进度建立和维护BIM模型,使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并将得到的信息结合三维模型进行整理和储存,以备项目全过程中项目各相关利益方随时共享。目前业内主要采用“分布式”BIM模型的方法,建立符合工程项目现有条件和使用用途的BIM模型。这些模型根据需要大致可分为:设计模型、施工模型、进度模型、成本模型、制造模型、操作模型等。
2.场地分析
传统的场地分析存在诸如定量分析不足、主观因素过重、无法处理大量数据信息等弊端。通过BIM结合地理信息系统(简称GIS)对场地及拟建的建筑物空间数据进行建模,可迅速得出较准确的分析结果,帮助项目在规划阶段评估场地的使用条件和特点,从而作出新建项目理想的场地规划、交通流线组织关系、建筑布局等关键决策。
3.建筑策划
利用对建设目标所处社会环境及相关因素的逻辑数理分析,研究项目任务书对设计的合理导向,制定和论证建筑设计依据,科学地确定设计的内容,并寻找达到这一目标的科学方法。BIM能够帮助项目团队再建筑规划阶段,通过多空间进行分析来理解复杂空间的标准和法规,从而节省时间,并提供对团队更多增值活动的可能。特别是在客户讨论需求、选择以及分析最佳方案时,能借助BIM及相关分析数据,作出关键性的决定。
4.方案论证
项目投资方可以使用BIM来估计设计方案的布局、视野、照明、安全、人体工程学、声学、纹理、色彩及规范的遵守情况。BIM甚至可以做到建筑局部的细节推敲,迅速分析设计和施工中可能需要应对的问题。还可以借助BIM提供方便的、低成本的不同解决方案供项目投资方进行选择,通过数据对比和模拟分析,找出不同解决方案的优缺点,帮助项目投资方迅速评估建筑投资方案的成本和时间。
5.可视化设计
对于设计师而言,除了用于前期推敲和阶段展现,大量的设计工作还是要基于传统CAD平台,使用平、立、剖等三视图的方式表达来展现自己的设计成果。BIM的出现使得设计师不仅拥有了三维可视化设计工具,所见即所得,更重要的是通过工具的提升,使设计师能使用三维的思考方式来完成建筑设计,同时,也使业主及最终用户真正摆脱技术壁垒的限制,随时知道自己的投资能获得什么。
6.协同设计
协同设计是一种新兴的建筑设计方式,它可以使分布在不同地理位置的不同专业的设计人员通过网络的协同展开设计工作。现有的协同设计主要是基于CAD平台,CAD的通用文件格式仅仅是对图形的描述,无法加载附加信息。BIM使得协同不再是简单的文件参照,BIM技术为协同设计提供底层支撑,大幅提升协同设计的技术含量。借助BIM的技术优势,协同的范畴也从单纯的设计阶段扩展到建筑全生命周期,需要规划、设计、施工、运营等各方的集体参与,因此具备了更广泛的意义,带来综合效益的大幅提升。
7.性能化分析
利用BIM技术,在设计过程中创建的虚拟建筑模型已经包含了大量的设计信息(几何信息、材料性能、构件属性等),只要将模型导入相关的性能化分析软件,就可以得到相应的分析结果,原本需要专业人士花费大量时间输入大量专业数据的过程,通过BIM技术可以自动完成,大大降低了性能化分析的周期,提高了设计质量。
8.工程量统计
BIM 是一个富含工程信息的数据库,可以真实地提供造价管理需要的工程量信息,借助这些信息,计算机可以快速对各种构件进行统计分析,大大减少了繁琐的人工操作和潜在错误,非常容易实现工程量信息与设计方案的完全一致。
9.管线综合
随着建筑物规模和使用功能复杂程度的增加,无论设计企业还是施工企业甚至是业主对机电管线综合的要求愈加强烈。利用BIM技术,通过搭建各专业的BIM模型,设计师能够在虚拟的三维环境下方便地发现设计中的碰撞冲突,从而大大提高了管线综合的设计能力和工作效率。这不仅能及时排除项目施工环节中可能遇到的碰撞冲突,显着减少由此产生的变更申请单,更大大提高了施工现场的生产效率,降低了由于施工协调造成的成本增长和工期延误。
10.施工进度模拟
通过将BIM与施工进度计划相链接,将空间信息与时间信息整合在一个可视的4D(3D+Time)模型中,可以直观、精确地反映整个建筑的施工过程。4D施工模拟技术可以在项目建造过程中合理制定施工计划、精确掌握施工进度,优化使用施工资源以及科学地进行场地布置,对整个工程的施工进度、资源和质量进行统一管理和控制,达到以缩短工期、降低成本、提高质量的目标。
11.施工组织模拟
通过BIM可以对项目的重点或难点部分进行可建性模拟,按月、日、时进行施工安装方案的分析优化。对于一些重要的施工环节或采用新施工工艺的关键部位、施工现场平面布置等施工指导措施进行模拟和分析,以提高计划的可行性;也可以利用BIM技术结合施工组织计划进行预演以提高复杂建筑体系的可造性。
12.数字化建造
BIM模型直接应用于制造环节,建筑中的许多构件可以异地加工,然后运到建筑施工现场,装配到建筑中(例如门窗、预制混凝土结构和钢结构等构件)。通过数字化建造,可以自动完成建筑物构件的预制,这些通过工厂精密机械技术制造出来的构件不仅降低了建造误差,并且大幅度提高构件制造的生产率,使得整个建筑建造的工期缩短并且容易掌控。
13.建筑系统分析
BIM结合专业的建筑物系统分析软件,避免了重复建立模型和采集系统参数。可以验证建筑物是否按照特定的设计规定和可持续标准建造,通过这些分析模拟,最终确定、修改系统参数甚至系统改造计划,以提高整个建筑的性能。
14.资产管理
由于建筑施工和运营的信息割裂,使得这些资产信息需要在运营初期依赖大量的人工操作来录入,而且很容易出现数据录入错误。BIM中包含的大量建筑信息能够顺利导入资产管理系统,大大减少了系统初始化在数据准备方面的时间及人力投入。由于传统的资产管理系统本身无法准确定位资产位置,通过BIM结合RFID的资产标签芯片还可以使资产在建筑物中的定位及相关参数信息一目了然。
15.灾难应急模拟
利用BIM及相应灾害分析模拟软件,可以在灾害发生前模拟灾害发生的过程,分析灾害发生的原因,制定避免灾害发生的措施以及发生灾害后人员疏散、救援支持的应急预案。
16.竣工模型交付
通过BIM与施工过程记录信息的关联,甚至能够实现包括隐蔽工程资料在内的竣工信息集成,不仅为后续的物业管理带来便利,并且可以在未来进行的翻新、改造、扩建过程中为业主及项目团队提供有效的历史信息。
Ⅳ BIM是什么意思
01 BIM模型维护
根据项目建设进度建立和维护BIM模型,实质是使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并且将得到的信息结合三维模型进行整理和储存,以备项目全过程中项目各相关利益方随时共享。由于BIM的用途决定了BIM模型细节的精度,同时仅靠一个BIM工具并不能完成所有的工作,所以目前业内主要采用“分布式”BIM模型的方法,建立符合工程项目现有条件和使用用途的BIM模型。这些模型根据需要可能包括:设计模型、施工模型、进度模型、成本模型、制造模型、操作模型等。
灾害应急模拟
利用BIM及相应灾害分析模拟软件,可以在灾害发生前,模拟灾害发生的过程,分析灾害发生的原因,制定避免灾害发生的措施,以及发生灾害后人员疏散、救援支持的应急预案。当灾害发生后,BIM模型可以提供救援人员紧急状况点的完整信息,这将有效提高突发状况应对措施。此外楼字自动化系统能及时获取建筑物及设备的;状态信息,通过BIM和楼宇自动化系统的结合,使得BIM模型能清晰地呈现出建筑物内部紧急状况的位置,甚至到紧急状况点最合适的路线,救援人员可以由此做出正确的现场处置,提高应急行动的成效。
Ⅵ GIS与BIM融合
这两个系统的整合以后的应用领域很广阔,包含城市和景观规划、建筑设计、旅游和休闲活动、3D地籍图、环境模拟、热能传导模拟、移动电信、灾害管理、国土安全、车辆和行人导航、训练模拟器、移动机器人、室内导航等。虽然BIM在国内应用很少,但是行业内应该关注并展望BIM和GIS结合所带来的思路的转变、成本的降低以及效率的提高。
【国土安全】
在OGC的网站上有个以国土安全为目标的“狙击手行动”测试。其中设置了一个场景:一名重要的政客沿着特定的路线行进,出于安全需要,需要事先找到所有能看到这条路线的窗子和建筑物,并通过计算得出狙击手可能躲藏的位置。以往是在3D查看器中浏览沿线所有的建模模型,并以专业人员的经验来判断狙击手可能选择的位置。但是现在可以通过BIM和GIS共同生成的城市的模型数据来生成一个线路沿线上符合条件的窗子和建筑的列表报告。如果只是应用其中一方作为分析手段都会产生局限性。例如CityGML不会储存窗子的宽度和高度,而且要是通过几何形状去算的话将会非常复杂且费时费力;而且IFC中却正好存储了窗子的尺寸,两者通过GeoBIM就达到了IFC数据与CityGML的有效融合。这个例子正是通过利用路线沿线的城市模型所附加的非常详细的CityGML信息和IFC模型的数据,所以我们非常简便并准确地才能定位和识别窗子
【室内导航】
现在行业中都想解决室内定位这一难题,但是大多关注的都是定位的手段,例如到底是Wi-Fi还是蓝牙,是LFC还是NFC等等,但是室内定位的地图却一般都是建筑的二维电子图来生成的,甚至只是示意图;室外的地图导航都开始真三维化了,室内导航还用二维线条,这着实有点跟不上节奏了!但是如果有BIM,那这一问题就能迎刃而解:通过BIM提供的建筑内部模型配合定位技术可以进行三维导航,例如有公司为央视新大楼开发的室内导航系统,就是利用了BIM和GIS,可以为员工进行跨楼层跨楼体的导航。同时也可以在模拟突发事件时,事先规预演工的疏散路线等情况,这将极大降低因灾害引起的人员伤亡。
【三维城市建模】
城市建筑类型各具特色,外型尺寸不同,外部颜色纹理不同,以及障碍物阻挡等。如果是“航测+地面摄影”,后期需要人工做大量贴图;如果是用价格昂贵的激光雷达扫描,成本太高而且生成的建筑模型都是“空壳”,没有建筑室内信息,同时室内三维建模工作量也不小,并且无法进行室内空间信息的查询和分析。而通过BIM,可以轻易得到建筑的精确高度、外观尺寸以及内部空间信息。因此,通过综合BIM和GIS,先对建筑进行建模,然后把建筑空间信息与其周围地理环境共享,应用到城市三维GIS分析中,就极大的降低了建筑空间信息的成本。当然这个前提是建筑都应用到BIM,现阶段在我国还依旧很难实现。
【市政模拟】
通过BIM和GIS融合可以有效的进行楼内和地下管线的三维建模,并可以模拟冬季供暖时热能传导路线,以检测热能对其附近管线的影响。或是当管线出现破裂时使用疏通引导方案可避免人员伤亡及能源浪费。
【资产管理】
以BIM提供的精细建筑模型为载体,利用GIS来管理建筑内部资产的位置等信息,可以提高资产管理的自动化水平和准确性。不会出现资产管理不明,或是不在它该在的位置这种尴尬情况。
Ⅶ BIM+GIS融合能打造出什么平台
从我的理解说一下吧
现在这个社会,硬件和软件能力的变化以及向数据驱动的数字化社会的转变越来越多的整合以前从未存在的各种技术和领域创造机会.GIS和BIM之间的数据和工作流程集成可以使我们周围城市,校园和工作场所具有更高的效率,可持续性和可居住性.曾经GIS和BIM是孤立的,现在将它们结合在一起对于设计,施工和基础设施项目来说是革命性的.
举个例子:
使用GIS,可以构建包含地理层(如土壤,地质和植被),建筑层(如土地利用,建筑物,高速公路和基础设施)和社交层(如社交数据和代码)的数据模型要求.链接BIM和GIS将使设计人员能够根据网站的地理信息进行设计.例如,如果一个场地需要挖掘,设计师可以围绕场地的地形数据开发模型.GIS数据将越来越多地作为现有设计人员工作流程中的服务提供出来.设计人员将能够在软件中订阅或访问GIS信息层,例如知名的BIM软件Autodesk的Revit就能订阅ArcGIS的数据.
BIM+GIS的未来面貌是CIM:
CIM或者说城市信息模型,是个比较年轻的概念,用于描述BIM建模概念在个别项目到整个城市的应用.城市信息模型将会是智能城市的技术基石(与大数据,物联网,实时传感器等一起工作),可以协助城市的规划,设计,分析和改进.如果BIM技术通过允许项目利益相关者使用一个共享模型来彻底改变建筑项目,CIM则有能力彻底改变城市规划,治理和基础设施,并使设计师和建筑商能够更好地为他们特定的地理和社会环境建设.
Ⅷ 未来BIM技术运用领域有哪些
【导语】建筑行业近年来一直在不断发展中,从传统的手工设计到现在的CAD技术等的推广,让众多建筑设计师、预算师从“手工”行列解放了出来,而现在,建筑信息模型(BIM)的出现将引发工程建设领域的第二次数字革命,BIM软件不仅带来现有技术的进步和更新换代,也会影响生产组织模式和管理方式的变革,并将推动人们思维模式的转变,那么未来BIM技术运用领域有哪些呢?下面就具体来了解一下吧。
1、BIM模型维护
BIM模型维护是指根据项目建设进度建立和维护BIM模型,使用BIM平台汇总各项目团队所有的建筑工程信息,消除项目中的信息孤岛,并将得到的信息结合三维模型进行整理和储存,以备项目全过程中项目各相关利益方随时共享。
BIM的用途决定了BIM模型细节的精度,但仅靠一个BIM工具并不能完成所有的工作。所以,目前业内主要采用“分布式”BIM模型的方法,建立符合工程项目现有条件和使用用途的BIM模型。这些模型根据需要大致可分为:设计模型、施工模型、进度模型、成本模型、制造模型、操作模型等。
2、场地分析
场地分析是研究影响建筑物定位的主要因素,是确定建筑物的空间方位和外观、建立建筑物与周围景观的联系的过程。在规划阶段,场地的地貌、植被、气候条件都是影响设计决策的重要因素,往往需要通过场地分析来对景观规划、环境现状、施工配套及建成后交通流量等各种影响因素进行评价及分析。
传统的场地分析存在诸如定量分析不足、主观因素过重、无法处理大量数据信息等弊端。通过BIM结合地理信息系统(简称GIS)对场地及拟建的建筑物空间数据进行建模,可迅速得出较准确的分析结果,帮助项目在规划阶段评估场地的使用条件和特点,从而作出新建项目最理想的场地规划、交通流线组织关系、建筑布局等关键决策。
3、建筑策划
建筑策划是在总体规划目标确定后,根据定量分析得出设计依据的过程。建筑策划利用对建设目标所处社会环境及相关因素的逻辑数理分析,研究项目任务书对设计的合理导向,制定和论证建筑设计依据,科学地确定设计的内容,并寻找达到这一目标的科学方法。在这一过程中,除了运用建筑学的原理,借鉴过去的经验和遵守规范,更重要的是要以实态调查为基础,用计算机等现代化手段对目标进行研究。BIM能够帮助项目团队在建筑规划阶段,通过对空间进行分析来理解复杂空间的标准和法规,从而节省时间,并提供对团队更多增值活动的可能。特别是在客户讨论需求、选择以及分析方案时,能借助BIM及相关分析数据,作出关键性的决定。
BIM在建筑策划阶段的应用成果还可以帮助建筑师在建筑设计阶段随时查看初步设计是否符合业主的要求,是否满足建筑策划阶段得到的设计依据,通过BIM连贯的信息传递或追溯,大大减少之后详图设计阶段发现问题需要修改设计的巨大浪费。
4、方案论证
在方案论证阶段,项目投资方可以使用BIM来评估设计方案的布局、视野、照明、安全、人体工程学、声学、纹理、色彩及规范的遵守情况。BIM甚至可以做到建筑局部的细节推敲,迅速分析设计和施工中可能需要应对的问题。
方案论证阶段还可以借助BIM提供方便的、低成本的不同解决方案供项目投资方进行选择,通过数据对比和模拟分析,找出不同解决方案的优缺点,帮助项目投资方迅速评估建筑投资方案的成本和时间。
对设计师来说,通过BIM来评估所设计的空间,可以获得较高的互动效应,以便从使用者和业主方获得积极的反馈。设计的实时修改往往基于最终用户的反馈,在BIM平台下,项目各方关注的焦点问题比较容易得到直观的展现并迅速达成共识,相应地,需要决策的时间也会减少。
以上就是未来BIM技术运用领域相关介绍,在国内建筑市场,BIM目前多应用在以上领域,未来随着信息化、技能化的普及,应用领域必然会越来越广泛,BIM高级工程师证书的作用和优势也会越来越明显的,希望大家提早考取,加油!