导航:首页 > 人文历史 > 被誉为一个历史性难题的是什么

被誉为一个历史性难题的是什么

发布时间:2022-09-19 19:58:12

⑴ 麻烦一下,哪位高手能透彻的给我解释一下世界近代数学三大难题

费尔马大定理
四色猜想
哥德巴赫猜想
1.费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本着名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a+b=c是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。

2.四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)

这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、着名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、着名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。

肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。

肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。

11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国着名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。

他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。

电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。

这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。

“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。

不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。

3.史上和质数有关的数学猜想中,最着名的当然就是“哥德巴赫猜想”了。

1742年6月7日,德国数学家哥德巴赫在写给着名数学家欧拉的一封信中,提出了两个大胆的猜想:

一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。

这就是数学史上着名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。

1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

1966年,我国着名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。

由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

⑵ 历史上最着名的难题是哪些

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
难题”之二:霍奇猜想
难题”之三:庞加莱猜想
难题”之四:黎曼假设
难题”之五:杨-米尔斯存在性和质量缺口
难题”之六:纳维叶-斯托克斯方程的存在性与光滑性
难题”之七:贝赫和斯维讷通-戴尔猜想
难题”之八:几何尺规作图问题

⑶ 什么是德里达难题

德里达难题是指哲学家德里达基于对语言学中的结构主义的批判,提出了“解构主义”的理论。

核心理论是对于结构本身的反感,认为符号本身已能够反映真实,对于单独个体的研究比对于整体结构的研究更重要。在海德格尔看来,西方的哲学历史即是形而上学的历史,它的原型是将“存在”定为“在场”,借助于海德格尔的概念,德里达将此称作“在场的形而上学”。

(3)被誉为一个历史性难题的是什么扩展阅读

解构主义流派反对结构主义,解构主义认为结构没有中心,结构也不是固定不变的,结构由一系列的差别组成。由于差别在变化,结构也跟随着变化,所以结构是不稳定和开放的。因此解构主义又被称为后结构主义。德里达认为文本没有固定的意义,作品的终极不变的意义是不存在的。

“在场的形而上学”意味着在万物背后都有一个根本原则,一个中心语词,这种终极的、真理的、第一性的东西构成了一系列的逻各斯,所有的人和物都拜倒在逻各斯门下,遵循逻各斯的运转逻辑,而逻各斯则是永恒不变,它近似于“神的法律”,背离逻各斯就意味着走向谬误。

⑷ 数学家华罗庚的简介

华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。

他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。

国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。

(4)被誉为一个历史性难题的是什么扩展阅读:

一、个人贡献:

华罗庚早年的研究领域是解析数论,他在解析数论方面的成就尤其广为人知,国际间颇具盛名的“中国解析数论学派”即华罗庚开创的学派,该学派对于质数分布问题与哥德巴赫猜想做出了许多重大贡献。

华罗庚也是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者。

华罗庚在多复变函数论,典型群方面的研究领先西方数学界10多年,是国际上有名的“典型群中国学派”。

开创中国数学学派,并带领达到世界一流水平。培养出众多优秀青年,如王元、陈景润、万哲先、陆启铿、龚升等。

二、主要荣誉:

华罗庚为中国数学发展作出的贡献,被誉为“中国现代数学之父”,“中国数学之神”,“人民数学家”。

在国际上享有盛誉的数学大师,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等着名博物馆中,与少数经典数学家列在一起,被列为“芝加哥科学技术博物馆中当今世界88位数学伟人之一”。

1948年当选为中央研究院院士。1955年被选聘为中国科学院学部委员(院士)。1982年当选为美国科学院外籍院士。1983年被选聘为第三世界科学院院士。

1985年当选为德国巴伐利亚科学院院士。被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。

建国六十年来,“感动中国一百人物之一”。

⑸ 世界上最难的数学题世界七大数学难题难倒了全世界

今天我们来和大家说说世界七大数学难题,这些可都是世界上最难的数学题哦。 说到数学难题你会想到什么,我最先想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。

世界七大数学难题:

1、P/NP问题(P versus NP)

2、霍奇猜想(The Hodge Conjecture)

3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。

4、黎曼猜想(The Riemann Hypothesis)

5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)

6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)

7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)

虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 最常被引用的结果之一是设计神谕。假想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题

⑹ 为什么对农业的改造是一个历史性的难题

对农业的改造,首先就是要消灭农业人口,让农业实现机械化,质量化和高技术化。但是现在谁愿意呢?一个经济学家因为说要消灭农民都被封杀。那就不能消灭农民,农民一人在土地上,那么谈何改造?

⑺ 什么是李约瑟难题

李约瑟难题是英国学者李约瑟所提出的,其内容是:尽管中国古代对人类科技发展做出了很多重要贡献,但为什么科学和工业革命没有在近代的中国发生?对此问题的争论一直非常热烈。李约瑟难题无疑是李氏研究中国科学技术史的中心论题。他提出了:尽管中国古代对人类科技发展做出了很多重要贡献,但为什么科学和工业革命没有在近代的中国发生?他个人见解是中国长久没有发展了,如腓尼基人和希腊人早期的城邦和现代城市,要为生存而互相竞争的环境。中国实现首次统一后 (可能指的是秦的统一),他所谓的“封建官僚制度”的政府实行中央指导性政策。所谓“封建”是指中央集权,所谓“官僚”是指皇帝直接管理官员,地方行政只对朝廷负责。官僚思想深刻地渗透到整个中国人的复杂思想中。甚至在民间传说中,也充满了这种思想。科举制度也鼓吹这种“封建官僚制度”。

这种制度产生了两种效应。正面效应加上科举制度的选拔,可以使中国非常有效地集中了大批聪明的、受过良好教育的人,他们的管理使得中国井然有序,并使中国发展了以整体理论,实用化研究方法的科技。比如中国古代天文学取得了很大成就,其数据至今仍有借鉴价值,再比如大运河的修建等。

但这种“封建官僚制度”的负面效应是,使得新观念很难被社会接受,新技术开发领域几乎没有竞争。在中国,商业阶级从未获得欧洲商人所获得的那种权利。中国有许多短语,如“重农轻商”等,和中国历代的“重农抑商”政策表明了在那些年代的官僚政府的指导性政策。比如明朝末期的宋应星在参加科举失败后撰写《天工开物》,但他认为不会有官员读这本书。

在西方,发展了以还原论,公式化研究方法的科技。此种科技的兴起与商业阶级的兴起相联系,鼓励较强的技术开发竞争。在中国,反对此种科技的发展的阻力太大。西方式的科技发展却能冲破这些阻力,取得现在的成就。比如欧洲国家之间的竞争使得欧洲在中国火药的基础上发明并改良火药武器。在这方面,自秦朝以后的中国不但比不上相同时期的欧洲,甚至比不上春秋战国时期的中国。

另外他补充到:中国所处的地理环境也互相影响了政府的态度。中国独有的水利问题(尤其是黄河)令中国人从很早的时候起就得去修建水利网。而且必须从整体集中资源治理,才能有希望解决水患问题。水利网超出了任何一个封建领主的领地,这就可以解释为什么在中国,封建主义让位给中国官僚式的文明。

最后他做出结论:“如果中国人有欧美的具体环境,而不是处于一个广大的、北面被沙漠切断,西面是寒冷的雪山,南面是丛林,东面是宽广的海洋的这样一个地区,那情况将会完全不同。那将是中国人,而不是欧洲人发明科学技术和资本主义。历史上伟大人物的名字将是中国人的名字,而不是伽利略、牛顿和哈维等人的名字。”李约瑟甚至说,如果那样,将是欧洲人学习中国的象形文字,以便学习科学技术,而不是中国人学习西方的按字母顺序排列的语言。

其实李约瑟一直强调其问题是把双刃的剑,李约瑟难题还有另外一个表述方式:为什么在公元前2世纪至公元16世纪之间,在将人类的自然知识应用于实用目的方面,中国较之西方更为有效?或者,为什么近代科学,关于自然界假说的数学化学及其相关的先进技术,只是辉煌而短暂地兴起于伽利略时代的欧洲?

李约瑟在1930年代开始研究中国科技史时提出了这一问题。1976年,美国经济学家肯尼思·博尔丁称之为李约瑟难题。很多人把李约瑟难题进一步推广,出现“中国近代科学为什么落后”、“中国为什么在近代落后了”等问题。早在李约瑟之前,就有很多人提出与李约瑟难题类似的问题。中国学者中最有名的是任鸿隽在中国最早的科学杂志《科学》第1卷第1期(1915年)发表《说中国无科学之原因》一文提出了类似的问题。

而西方作品的部份,魏特夫在1931年的一篇文章〈为何中国没有产生自然科学?〉开启了李约瑟对中国的科技史的研究兴趣。若如很多不深入理解者所以为“为何中国没有产生科学”这句话就是李约瑟问题的全部内容,那么不亦是说:李约瑟是被“李约瑟难题”所吸引,进而研究它,然后再把它给提出来——这么说显然是不准确的。李约瑟在经过他毕生的钻研后总结说:魏特夫的看法是太过肤浅的并且是欧洲人本位的。在这一个部份,李约瑟已经在西方获得“中国科技史”的权威研究者评价,但李约瑟却也必须承认中国这四、五百年来的科学落后仍是不争的事实,所以魏特夫的提问仍然没有解决,而李约瑟不愿意武断地结论中国人的民族性较西方人次等。正是因为李约瑟拒绝像他所批评的魏特夫一样用民族性差异做为这个问题的解答,因此陷入了难题。

另外现任李约瑟研究所所长古克礼转述了李约瑟临终前的观点:“李约瑟先生透过他多年来对中国以及中国人的了解,他确信中国能够再度崛起,一个拥有如此伟大的文化的国家,一个拥有如此伟大的人民的国家,必将对世界文明再次做出伟大贡献。”

关于李约瑟难题的争论和见解一直都比较多,直到现在仍然没有等到一个完整的答案。

阅读全文

与被誉为一个历史性难题的是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059