导航:首页 > 人文历史 > 为什么历史上把动能叫做活力

为什么历史上把动能叫做活力

发布时间:2022-10-19 06:11:37

⑴ 物理学史关于运动的两种量度的争论是如何提出的

本文简略介绍由莱布尼茨挑起的一场在科学史上非常着名的学术争论,即关于运动的量度的争论,一派主张以mv 2作为运动的量度,另一派主张以mv作为运动的量度,两派的争论和对峙长达半个多世纪。
17世纪是力学蓬勃发展时期,力学运动规律相继揭示和总结出来,而对其它运动形式还说不上有什么规律性的知识,“运动”在人们的心目中只是了解为力学运动或机械运动,即在力的作用下物体的空间位置随时间而变化。为了从量的方面去研究和把握力学运动规律,科学家们都希望能找到一个恰当的量来表征物体的运动量,这就是运动的量度问题。哲学家们也关心这个问题,因为有了运动的量度,才能阐明运动不灭原理。
伽利略曾经指出,物体运动的大小和物体的量与速度的乘积成正比。笛卡尔继承了这一看法,把物体的量与速度的乘积称为运动的量。他在1644年出版的《哲学原理》一书中,把他从碰撞问题研究中概括出来的运动量守恒的规律推广到全宇宙,认为宇宙的运动量是守恒的。这是人类思想史上关于运动不灭原理的最初表述。笛卡尔的后继者们进而把运动量解释为物体的质量m和速度v的乘积mv,并以mv作为运动的量度。牛顿在这个问题上与笛卡尔持同一观点。这样,在17世纪的好几十年间,mv就成为众所公认的运动量度。
到17世纪80年代,莱布尼茨率先对笛卡尔派的运动量度提出批评。他于1686年发表了“对笛卡尔等人在自然规律方面的显着错误的简短论证”。文中以落体运动为例,指出笛卡尔的运动量与伽利略的落体定律之间存在矛盾,认为应该以 mv2作为运动的量度。莱布尼茨把mv2 称为活力,把静止物体产生的压力或拉力称为死力。他指出,在考虑杠杆、滑轮、轮轴等简单机械装置的平衡问题时,计算mv的数值是有意义的,但是如果只承认mv守恒,不承认活力mv2守恒,就不能阐明运动不灭原理。
此后,莱布尼茨派与笛卡尔派在运动的量度问题上各自强调自己所依据的事实和推理方法,长期相持不下。欧洲许多着名科学家都卷入了这场争论,并且形成了两大对立的学派。争论有效地推动了关于运动量度问题的深入探讨。莱布尼茨派虽然坚信mv2 是运动的唯一量度,但也不能否认mv在许多场合下的有效性。笛卡尔派虽然力图把mv2 化归为mv,以坚持mv是运动的唯一量度,但也不能否认mv2 这个量的重要性。
1743年,法国科学家达朗贝尔(1717—1783)在其《动力学》一书的序言中,对这场争论作了总结性的评述,按照当时力学所达到的比较全面的认识水平对mv和mv2的性质作了分析,肯定了两种量度都是有效的,从而以所谓“达朗贝尔的判决”平息了这场长达半个多世纪的争论。19世纪以后的力学家们更加明确地认识到,根据牛顿第二定律f = ma ( f 是作用于物体的力,m 为物体的质量,a为物体运动的加速度),如果从运动的时间t方面看力的积累作用,用动量的变化(f t = mv2-mv1)来表现;如果从运动的距离s,即空间方面看力的积累作用,则用动能的变化(f s =1/2mv22 –1/2mv21)来表现。任何一个运动系统都有一定的动量和动能,分别服从动量守恒定律和能量守恒定律,都是刻画物体运动不可缺少的物理量。
达朗贝尔的“判决”曾经起了积极的作用,使人们对于 mv和mv2的区别弄得比较清楚了,不再简单地承认一个、排斥一个,而是考虑问题的性质和需要,选用一种量度或是运用两种量度。运动的量度问题似乎就这样解决了,那么,怎样看待这场争论呢?达朗贝尔曾说这是一场“毫无益处的咬文嚼字的争论”,不少科学家也跟着说这是“毫无价值”的争论,而且也没有兴趣去探求对这两种运动量度的更加深刻的理解了。
恩格斯却很重视这场争论,他说:“看起来还不能把这场争论完全归结为一场毫无益处的咬文嚼字的争论,这场争论是由莱布尼茨这样的人物反对笛卡儿这样的人物而引起的,而且又有康德这样的人物参加,他的第一部洋洋巨着就是为这场争论写的”。恩格斯对两派的分歧、达朗贝尔的“判决”以及各有关人物的观点作了认真的考察,在1880―1881年间撰写了一篇专题文稿“运动的两种量度——功”,指出“必须弄清楚为什么会有两种量度”。他认为“运动的不灭不能仅仅从数量上去把握,而且还必须从质量上去理解”,应该依据19世纪所发现的能量守恒和转化定律来理解运动量度的意义,mv和mv2的区别在于,只有mv2才是机械运动转化为其它运动形式的能力的一种量度。
关于运动量度的这场历史争论表明,不同的人从不同的角度、根据不同的事实去研究同一问题时,是会提出不同的见解的。科学认识的历史是不同的观点不断争论的历史。通过争论,帮助人们的认识从片面走向全面,从浮浅走向深刻。科学争论是推动科学进步所必需的一个重要环节,是不应该忽视或蔑视的。

⑵ 动能形式、能量形式__各举例2个!

物体由于运动而具有的能叫动能,它的大小是运动物体的质量和速度平方乘积的二分之一。物体的速度越大,质量越大,具有的动能就越多。运动速度相同的物体,质量越大,它的动能也越大. 力在一个过程中对物体所做的功等于在这个过程中动能的变化。合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化。
比如说一个运动的物体向一个方向运动,它能产生的这个运动过程就是动能!

能量是物理学中描写一个系统或一个过程的一个量。一个系统的能量可以被定义为从一个被定义的零能量的状态转换为该系统现状的功的总和。一个系统到底有多少能量在物理中并不是一个确定的值,它随着对这个系统的描写而变换。 人体在生命活动过程中,一切生命活动都需要能量,如物质代谢的合成反应、肌肉收缩、腺体分泌等等。而这些能量主要来源于食物。动、植物性食物中所含的营养素可分为五大类:碳水化合物、脂类、蛋白质、矿物质和维生素,加上水则为六大类。其中,碳水化合物、脂肪和蛋白质经体内氧化可释放能量。三者统称为“产能营养素”或“热源质”。
能量是一种客观存在,自然界的万物都是他的表现形式。与物质都存在反物质一样他也有相对的反能量。当他们相遇时系统就恢复平静了,就什么都没有了,就不存在了。
通常每克碳水化合物、脂肪、蛋白质在人体内平均可产生代谢能力分别为4kcal、9kcal、4lcal。同时一般情况下一个人在5-7天内的热能摄入量等于消耗量
能量摄入过剩,则会在体内贮存起来。人体内能量的贮存形式是脂肪,脂肪在体内的异常堆积,会导致肥胖和机体不必要的负担,并可成为心血管疾病、某些癌症、糖尿病等退行性疾病的危险因素。
人体每日摄入的能量不足,机体会运用自身储备的能量甚至消耗自身的组织以满足生命活动的能量需要。人长期处于饥饿状态,在一定时期内机体会出现基础代谢降低、体力活动减少和体重下降以减少能量的消耗,使机体产生对于能量摄入的适应状态,此时,能量代谢由负平衡达到新的低水平上的平衡。其结果引起儿童生长发育停滞,成人消瘦和工作能力下降。
任何运动都需要能量。能量的形式有许多如:光声热电,有机械能,化学能,热能,电能,声能等等。
举一个例子而言,我们观察一个质量为1kg的固体的能量:
假如我们在研究经典力学而只对它的动能感兴趣的话,那么它的能量就是我们要将它从静止加速到它现有速度所加的功的总和。
假如我们在研究热学而只对它的内能感兴趣的话,那么它的能量就是我们要将它从绝对零度加热到它现有温度所加的功的总和。
假如我们在研究物理化学而只对它所含有的化学能感兴趣的话,那么它的能量就是我们在合成这个固体时对它的原料加入的功的总和。
假如我们在研究原子物理而只对它所含的原子能感兴趣的话,那么它的能量就是我们从原子能为零的状态对它做功、使它达到现在状态的功的总和。
当然我们也可以用反过来的方法来定义这个固体所含的能量,举两个例子:
该固体的内能是将它冷却到绝对零度所释放出来的功的总和。
该固体的原子能是将它所含的所有的原子能全部释放出来的功的总和。
可见,能量虽然是一个非常常用和非常基础的物理概念,但同时也是一个非常抽象和非常难定义的物理概念。事实上,物理学家一直到19世纪中才真正理解能量这个概念。在此之前能量常常被与力、动量等概念相混。有一段时间里,物理学家使用过一个称为“活力”的、与能量非常相似的概念,其意思是一种使物体活泼起来(动起来、热起来)的力。英语中的能量一词energy是两个希腊词的组合:εν是“在……之中”的意思,εργοs是“功、劳动”的意思。加在一起 en-ergi 就是“加进去的功”的意思

⑶ 阅读下面的资料:1686年,莱布尼兹从落体定律提出“活力”的概念,并用物体的质量与速度的平方的乘积(即

(1)用动能定理,可得FS=

1
2
mv2-0,
解得:v=

⑷ 能量的概念最早由谁提出

能量(Energy)这个词是T.杨于1807年在伦敦国王学院讲自然哲学时引入的,针对当时的“活力”或“上升力”的观点,提出用“能量”这个词表述,并和物体所作的功相联系,但未引起重视,人们仍认为不同的运动中蕴藏着不同的力。1831年法国学者科里奥利又引进了力做功的概念,并且在“活力”前加了1/2系数,称为动能,通过积分给出了功与动能的联系。1853年出现了“势能”,1856年出现了“动能”这些术语。直到能量守恒定律被确认后 ,人们才认识到能量概念的重要意义和实用价值。
能量(energy)是质量的时空分布可能变化程度的度量,用来表征物理系统做功的本领。现代物理学已明确了质量与能量之间的数量关系,即爱因斯坦的质能关系式:E=mc2。
在经典力学中,其能量就是从静止加速到现有速度所作的功的总和。
在经典热学中,其能量就是从绝对零度加热现有温度所作的功的总和。
在物理化学中,其能量就是合成这个固体时对原料加入的功的总和。
在原子物理中,其能量就是从原子能为零的状态对它做功达到现有状态的功的总和。
还可以用相反的方法来定义这个固体所含的能量。举两个例子:
该固体的内能是将它冷却到绝对零度所释放出来的功的总和。
该固体的原子能是将其结合能在原子核裂变或聚变反应中释放出来变成反应产物的动能。
能量虽然是一个常用和基本的物理概念,同时也是一个抽象的物理概念。事实上,物理学家一直到19世纪中才真正理解能量概念,在此之前常常与力、动量等概念混淆。

⑸ “活力”的作用是指什么样的现象呢

1686年,着名的德国数学家莱布尼兹提出,力应该用它产生的效果来量度。按照他的看法,把1千克物体举高4米和把4千克物体举高1米,需要同样大小的"力";反过来,由4米高处落下的1千克的物体与1米高处落下的4千克的物体,他们获得的"力"也是相同的。莱布尼兹这里所说的"力",指的是重力与高度的乘积Gh,实际上是力所做的功。他进一步根据伽利略的落体定律计算出Gh与mv·v(m是受力物体质量,v是其速率)成正比,因此莱布尼兹认为应该用mv·v来量度力,并给它取了个名称,叫做"活力"。在以后100多年的时间里,"活力"成为学术界广为流行的一个用语。

莱布尼兹相信有某种与运动有关的量是守恒的,这就是他所说的"力"。但是,竖直上抛的物体,随着上升的高度的增加,活力逐渐减小,上升到最高点,活力变为零。应该怎样理解这一点呢?莱布尼兹认为,活力并没有在上升过程中损失掉,而是以某种形式贮存起来了。他把这种与静止状态相联系的贮存起来的"力",称之为"死力"。他使用的"活力"与"死力"这两个用语,说明当时还不能区别力和能这两个概念。而且,用"活力"来量度力的大小(实际上是用功来量度力的大小),也是不对的。第一个察觉这种概念上的混乱,把力与能区别开来的是英国物理学家托马斯·杨。他在1807年指出,重力和高度的乘积虽然可以用来表示力的作用效果,但是不能认为用mv·v来量度力是正确的。他提出用"能"这个词来代替"活力",并且指出,为了使物体产生运动所做的功,跟物体获得的能量mv·v成正比。

⑹ 质量跟活力是同一个意思吗

两个意思不同。质量有两个方面的意思:1.物体所含物质的数量叫质量,是度量物体在同一地点重力势能和动能大小的物理量。2。产品或工作的优劣程度,提高质量(一组固有特性满足要求的程度)。活力则是指旺盛的生命力;行动上、思想上或表达上的生动性。

⑺ 什么叫做活力

活力,指旺盛的生命力,行动上、思想上或表达上的生动性。
1. [vigor;vitality;energy]∶旺盛的生命力。
充满着青春的活力。
2. [life]∶行动上、思想上或表达上的生动性。
那些老概念仍有活力。
3. [vivilization]∶朝气蓬勃,刚劲有力。
他的文学作品已经失去了准则和规范,同时也失去了活力。

⑻ 动能和势能各是什么

1、动能:物体由于运动而具有的能量,称为物体的动能。它的大小定义为物体质量与速度平方乘积的二分之一。因此,质量相同的物体,运动速度越大,它的动能越大;运动速度相同的物体,质量越大,具有的动能就越大。

2、势能:势能是储存于一个系统内的能量,也可以释放或者转化为其他形式的能量。势能是状态量,又称作位能。势能不是属于单独物体所具有的,而是相互作用的物体所共有。

势能按作用性质的不同,可分为引力势能、弹性势能、电势能和核势能等。力学中势能有引力势能和弹力势能。

(8)为什么历史上把动能叫做活力扩展阅读:

(1)动能和重力势能是可以相互转化的。

(2)动能和弹性势能可以相互转化。

(3)重力势能和弹性势能可以相互转化。

动能特征

(1)动能是标量,无方向,只有大小。且不能小于零。与功一致,可直接相加减。

(2)动能是相对量,式中的v与参照系的选取有关,不同的参照系中,v不同,物体的动能也不同。

(3)质点以运动方式所储存的能量。但在速度接近光速时有重大误差。狭义相对论则将动能视为质点运动时增加的质量能,修正后的动能公式适用于任何低于光速的质点。(参见“静质量”、“静质量能”) 。

⑼ 制造永动机的想法先出现还是能量守恒先被提出

永动机的想法的提出比能量守恒与转化定律的成熟要早

发现过程

19世纪中叶发现的能量守恒定律是自然科学中十分重要的定律。它的发现是人类对自然科学规律认识逐步积累到一定程度的必然事件。尽管如此,它的发现仍然是曲折艰苦的和激动人心的。了解能量守恒定律的发现过程,对于理解自然科学发展中理论的积累和形成是有益的。本文简要叙述能量守恒定律的发现过程。
1. 能量守恒定律发现的准备
能量守恒定律是联系机械能和热能的定律。不言而喻,在它发现之前人们必须对机械能和热能有较深入的研究。我们现在就这两方面来叙述。
活力与死力的论战
1644年笛卡尔(Rene Descartes,1596-1650)在他所着的《哲学原理》中讨论碰撞问题时引进了动量的概念,用以度量运动。1687年牛顿(Isac Newton,1642-1727)在他的《自然哲学的数学原理》中把动量的改变来度量力。与此不同的是莱布尼兹(Gottfried Wilhelm Leibniz,1646-1716)在1686年的一篇论文中抨击笛卡尔,主张用质量乘速度的平方来度量运动,莱布尼兹称之为活力。把牛顿由动量所度量的力也称为死力。莱布尼兹的主张正好和1669年惠更斯关于碰撞问题研究的结论一致,该结论说“两个物体相互碰撞时,它们的质量与速度平方乘积之和在碰撞前后保持不变。”
从莱布尼兹挑起争论起,形成了以笛卡尔和莱布尼兹两大派的论争。这场论战延续了近半个世纪,许多学者都参加了论战,并且各有实验佐证。一直到1743年法国学者达朗贝尔(Jean le Rond d'Alembert,1717-1783)在他的《论动力学》中说:“对于量度一个力来说,用它给予一个受它作用而通过一定距离的物体的活力,或者用它给予受它作用一定时间的物体的动量同样都是合理的。”在这里,达朗贝尔揭示了活力是按作用距离力的量度,而动量是按作用时间力的量度。这场争论终于尘埃落定了。活力才作为一个正式的力学名词为力学家们普遍接受。
活力虽然为力学家接受了,但是它与力的关系并没有弄清楚。一直到1807年英国学者托马斯·杨(Thomas Young,1773,5,10-1829,5,10)引进了能量的概念,1831年法国学者科里奥利(Gustave Gaspard Coriolis,1792-1843)又引进了力做功的概念,并且在活力前加了1/2系数称为动能,通过积分给出了功与动能的联系,即
F=1/2mv2这个式子表示力做功转化为物体的动能。也就是说自然界的机械能是守恒的。
温度计的发明与潜热的发现
关于热的精确理论应当从制造温度计开始。从17世纪开始,在意大利有伽利略(Galilei Galileo,1564-1642)等人开始制做温度计。但是由于采用的温标比较不方便,所以后人使用的很少。
比较早的实用温标是德国物理学家华伦海(Daniel Gabriel Fahrenheit ,1686-1736)从1714年开始使用水银做温度计,并且不断改进,直到1717年大致确定了现在所称的华氏温标。直到华伦海去世后,科学家才正式确定华氏温标为:以水的沸点为212度,把32度定为水的冰点。所以这样规定,是要尽量使通常的温度避免取负值。
摄耳修斯像瑞典天文学家摄耳修斯(Anders Celsius ,1701-1744) 于1742年到1743年发明了摄氏温标,以标准状态下水的结冰温度为零度水的沸点为100度。摄氏温标在1948年被国际度量衡会议定为国际标准。
温度计的发明给热学的精确化准备了必要的条件,人们可以用它来测量各种不同条件下物质的温度变化。最早人们并没有把温度和热量区分开来,认为温度就是热量。
18世纪50年代,英国科学家布莱克(Joseph.Black,1728—1799)把32°F的冰块与相等重量的172°F的水相混合,结果发现,平均温度不是102°F,而是32°F,其效果只是冰块全部融化为水。
布莱克由此作出结论:冰在熔解时,需要吸收大量的热量,这些热量使冰变成水,但并不能引起温度的升高。他还猜想到,冰熔解时吸收的热量是一定的。为了弄清楚这个问题,他把实验反过来作,即观测水在凝固时是否也会放出一定的热量。他把摄氏零下4°的过冷却的水不停地振荡,使一部分过冷却水凝固为冰,结果温度上升了;当过冷却水完全凝固时, 温度上升到摄氏零度,表明水在凝固时确实放出了热量。进一步的大量实验使布莱克发现,各种物质在发生物态变化(熔解、凝固、汽化、凝结)时,都有这种效应。他曾经用玻璃罩将盛有酒精的器皿罩住,把玻璃罩内的空气抽走,器皿中的酒精就迅速蒸发,结果在玻璃罩外壁上凝结了许多小水珠。这说明液体(酒精)蒸发 时要吸收大量的热,因而使玻璃罩冷却了,外壁上才凝结了水珠。
布莱克用一个很简单直观的办法来测定水汽化时所需要的热量。他用一个稳定的火来烧一千克零摄氏度的水,使水沸腾,然后继续烧火,直至水完全蒸发掉。他测出使沸腾的水完全蒸发所烧的时间,为使水由0℃升温到沸腾所烧的时间的4.5倍,表明所供热量之比为100∶450。这个实验当然是很粗糙的,所测的数值也有很大的误差;现在的测定表明这个比值为100∶539。布莱克还用类似的方法测出,熔解一定量的冰所需要的热量,和把相同重量的水加热140°F所需要的热量相等(相当于加热77.8℃所需要的热量),这个数值也偏小了一点,正确的数值为143°F(相当于80℃),但在当时,这种测量结果也是很难得的。
布莱克基于这些实验事实于1760年开始认识到热量与温度是两个不同的概念,进而在1761年他引入了“潜热”概念。
其后,法国科学家拉瓦锡(Antoine-Laurent de Lavoisier,1743-1794)与拉普拉斯(Pierre Simom Laplace,1749-1827)合作在1780年提出了正确测量物质热容量的方法。由于热的精确度量的成熟,1822年法国学者傅里叶(Jean Baptiste Joseph Fourier, 1768~1830)出版了他多年关于热学研究的总结着作《热的解析理论》。
热力机械的发明
从远古开始人类就认识到由机械运动可以产生热。无论东方和西方,古代都有钻木取火纪录,这就是把机械运动转变为热的早期实践。不过几千年中一直没有人想到机械能和热能的定量转换问题。直到美国人朗福德(Rumford,Benjamin Thompson,Count,1753-1814) 1798年在慕尼黑注意到,当用镗具钻削制造炮筒的青铜坯料时,金属坯料象火一样发烫,必须不断用水来冷却。朗福德注意到,只要镗钻不停止,金属就不停地发热;如果把这些热都传给原金属,则足可以把它熔化。朗福德的结论是,镗具的机械运动转化为热,因此热则是一种运动形式,而不是以前人们认为的是一种物质。朗福德还试图计算一定量的机械能所产生的热量。这样朗福德首次给出一个我们现在称为热功当量的数值。不过他的数值太高。半个世纪以后,焦耳提供了正确值。
提到热能转变为机械能,最早应当提到的是亚力山大的希罗(Hero of Alexandria,约公元62年前后)发明的蒸汽机。这项发明是一个空心球体上面连上两段弯管,当球内的水沸腾时,蒸汽通过管子喷出,这个球就迅速旋转,这是最早的蒸汽机。不过那时只是用于祭神与玩耍而没有实际应用。
1712年,英国人托马斯·纽可曼(Thomas Newcomen,1663-1729)发明了大气压蒸汽机。这种机器具有汽缸与活塞, 在工作时, 先把蒸汽导入汽缸, 这时汽缸停止供汽而汽缸内进水, 蒸汽便遇冷凝结为水使汽缸内气压迅速降低,就可以使水吸上来。之后再把蒸汽导入汽缸,进行下一个循环。最初的这种蒸汽机大约每分钟往返十次,而且可以自动工作,使矿井的抽水工作大为便利,所以不仅英国人使用,在德国与法国也在使用。
瓦特(James Watt,1736-1819)在18世纪后半叶对蒸汽机进行了改进。其中最重要的改进有两项,一项是发明了冷凝器大大提高了蒸汽机的效率,另一项是发明了离心调速器使蒸汽机速度可自由控制。在瓦特的改进之后蒸汽机才真正在工业上被普遍使用。

永动机的不可能
据说永动机的概念发端于印度,在公元12世纪传入欧洲。
据记载欧洲最早、最着名的一个永动机设计方案是十三世纪时一个叫亨内考(Villand de Honnecourt)的法国人提出来的。如图所示:轮子中央有一个转动轴,轮子边缘安装着12个可活动的短杆,每个短杆的一端装有一个铁球。
随后,研究和发明永动机的人不断涌现。尽管有不少学者研究指出永动机是不可能的,研究永动机的人还是前赴后继。
文艺复兴时期意大利伟大学者达 芬奇(Leonardo da vinc,1452-1519)曾经用不少精力研究永动机。可贵的是他最后得到了永动机不可能的结论。
与达 芬奇同时代还有一位名叫卡丹的意大利人(Jerome Cardan ,1501-1576),他以最早给出求解三次方程的根而出名,也认为永动机是不可能的。
关于永动机的不可能,还应当提到荷兰物理学家司提芬(Simon Stevin,1548 1620)。16世纪之前,在静力学中,人们只会处理求平行力系的合力和它们的平衡问题,以及把一个力分解为平行力系的问题,还不会处理汇交力系的平衡问题。为了解决这类问题,人们把他归结于解决三个汇交力的平衡问题。通过巧妙的论证解决了这个问题。假如你把一根均匀的链条ABC放置在一个非对称的直立(无摩檫)的楔形体上,如图所示。这时链条上受两个接触面上的反力和自身的重力。恰好是三个汇交力。链条会不会向这边或那边滑动?如果会,往哪一边?司提芬想象把楔形体停在空中,在底部由CDA把链条连起来使之闭合,如图,最后解决了 这个问题。在底部悬挂的链条自己是平衡的,把悬挂的部分和上部的链条连起来,斯提芬说:“假如你认为楔形体上的链条不平衡,我就可以造出永动机。”事实上如果链条会滑动,那么你就必然会推出封闭的链条会永远滑下去;这显然是荒谬的,回答必然是链条不动。并且他由此得到了汇交三力平衡的条件。他觉得这一证明很妙,就把图2放在他的着作《数学备忘录(Hypomnemata Mathematica)》的扉页上,他的同辈又把它刻在他的墓碑上以表达敬仰之意。汇交力系的平衡问题解决,也标志着静力学的成熟。
随着对永动机不可能的认识,一些国家对永动机给出了限制。如早在1775年法国科学院就决定不再刊载有关永动机的通讯。1917年美国专利局决定不再受理永动机专利的申请。
据英国专利局的助理评审员F. Charlesworth称:英国的第一个永动机专利是1635年,在1617年到1903年之间英国专利局就收到约600项永动机的专利申请。这还不包含利用重力原理之外的永动机专利申请。而美国在1917年之后还是有不少一时看不出奥妙的永动机方案被专利局接受。
2. 迈尔的发现与遭遇
在前面这些科学研究的基础上,机械能的度量和守恒的提出、热能的度量、机械能和热能的相互转化、永动机的大量实践宣布为不可能。能量守恒定律的发现条件是逐渐成熟了。于是这项发现最早就由迈尔来开头。
迈尔(Julius Robert Mayer,1814-1878)是德国的物理学家。大学时学医,但他并不喜欢当医生,他当过随船医生,工作比较清闲。
在西方大约从公元4世纪开始有一种大量放血的治疗方法。一次大约要放掉12到13盎司(约合340-370克,有一杯之多)的血,有的则一直放血放到病人感觉头晕为止。这种疗法的根据是,在古代的西方有一种所谓“液体病理”的理论,说人体含有多种液体,如血、痰、胆汁等。这些液体的过多或不足都会致病。放血的作用就是排除多余液体一种措施。中世纪西方的有钱人,特别是那些贵族上层人物、绅士们,还要在一年中定期放血,一般要在春秋各放血一次。放血另一种作用是使女人看上去更好看,这和西方当时的审美观有关,使她们既显得白皙,又不会因为害羞而满脸通红。所以西方的贵妇人也经常放血。迈尔作为一名医生,不用说也是经常使用放血疗法给人治病的。
大约是在1840年去爪哇的航行中,由于考虑动物体温问题而对物理学发生了兴趣。在泗水,当他为一些患病的水手放血时,他发现静脉的血比较鲜亮,起初他还误以为是切错了动脉。于是他思考,血液比较红是在热带身体不像在温带那样需要更多的氧来燃烧以保持体温。这一现象促使迈尔思考身体内食物转化为热量以及身体能够做功这个事实。从而得出结论,热和功是能够相互转化的。
他又注意到当时许多人进行永动机的实验都以失败而告终,从童年时期就给他留下了深刻的影响。这些使他猜想“机械功根本不可能产生于无”。
在1841年9月12日他给友人的信中最早提及了热功当量。他说:“对于我的能用数学的可靠性来阐述的理论来说,极为重要的仍然是解决以下这个问题:某一重物(例如100磅)必须举到地面上多高的地方,才能使得与这一高度相应的运动量和将该重物放下来所获得的运动量正好等于将一磅0℃的冰转化为0℃的水所必要的热量。”
1842年3月,迈尔写了一篇短文《关于无机界的力的看法》寄给了《药剂学和化学编年史》的主编、德国化学家李比希(Justus von Liebig,1803-1873),李比希立即答应使用这篇文章。机械的热功当量在这篇文章中得到第一次说明。文中说:“人们发现,一重物从大约365米高处下落所做的功,相当于把同重量的水从0℃升到1℃所需的热量。”他的文章发表于1842年5月。
迈尔是最早进行热功当量实验的学者,在1842年,他用一匹马拉机械装置去搅拌锅中的纸浆,比较了马所做的功与纸浆的温升,给出了热功当量的数值。他的实验比起后来焦耳的实验来,显得粗糙,但是他深深认识到这个问题的重大意义,并且最早表述了能量守恒定律。他在1842年底给友人的信中说:“我主观认为,表明我的定律的绝对真理性的是这种相反的证明:即一个在科学上得到普遍公认的定理:永动机的设计在理论上是绝对不可能的(这就是说,即使人们不考虑力学上的困难,比方说摩擦等等,人们也不可能成功地由思想上设计出来)。而我的断言可以全部被视为从这种不能原则中得出的纯结论。要是有人否认我的这个定理,那么我就能立即建造一部永动机。”
迈尔的论文没有引起社会重视,为了补足第一篇论文没有计算、过于简要的缺点,他写了第二篇论文,结果如石沉大海,没有被采用。他论证了太阳是地球上所有有生命能与非生命能的最终源泉。
后来亥姆霍兹与焦耳的论文相继发表,人们将能量守恒定理的发明人归于亥姆霍兹与焦耳。而他的论文既早又系统,却不仅得不到承认,而且还招来了一些攻击文章。再加1848年,他祸不单行,两个孩子夭折、弟弟又因参加革命活动受牵连。1849年,迈尔从三楼跳下,从此成为重残,而后又被诊断为精神分裂,送入精神病院,医生们认为他经常谈论的那种新发现,是一种自大狂的精神病症状。
1858年亥姆霍兹阅读了迈尔1852年的论文,并且承认迈尔早于自己影响很广的论文。克劳修斯也认为迈尔是守恒定律的发现者。克劳修斯把这一事实告诉了英国声学家丁铎尔(John Tyndall,1820-1893),一直到1862年由于丁铎尔在伦敦皇家学会上系统介绍了他的工作,他的成就才得到社会公认。1860年迈尔的早期论文翻译成英文出版,1870年之迈尔被选为巴黎科学院的通讯成员,并且获得了彭赛列奖(Prix Poncelet)。之后迈尔的命运有很大的改善。
3. 亥姆霍兹与焦耳的工作
亥姆霍兹与他的的《论力的守恒》
亥姆霍兹(Hermann von Helmholtz,1821-1894)出生在一个德国的穷教员家里,中学毕业后在军队服役8年,取得公费进入在柏林的王家医学科学院。1842年亥姆霍兹获得了博士学位。1845年他参加了由年轻的学者组织的柏林物理学协会,之后他经常参加协会活动,除作军医之外他还研究一切他感兴趣的问题。
1847年7月23日他向物理学协会作了题为《论力的守恒》的着名报告。报告后,他将文章交给《物理学编年史》的编辑,不料又和6年前迈尔的稿件一样的命运,编辑以没有实验事实而拒绝刊登。后来他将这篇论文作为小册子在另一家有名的出版社出版了。文章的结论与1843年焦耳的实验完全一致,很快就被人们称为“自然界最高又最重要的原理”。时间仅差数年,又由于有有名的出版社出版,他与迈尔的命运完全不同。后来英国学者开尔文采用了杨所提出的能量的概念,采用“势能”代替“弹力”,以“动能”代替“活力”,使在力学中延续了近200年的概念上含混不清的情况得到改变。
关于亥姆霍兹值得介绍的是他在德国科学家发展中所起的组织作用。1870年,他的老师马格努斯(Heinrich Gustav Magnus,1802-1870),德国最早的物理研究所所长,逝世了。当时还是副教授的亥姆霍兹继任为所长。那时,德国的科学研究水平,比起英国与法国要落后得多。不久普法战争结束,德国从法国得到一大笔赔款,德国的经济状况有所改善,亥姆霍兹得到了300万马克的经费去筹建新的研究所,经过5年的努力新研究所建成。这个研究所后来吸引了大批优秀的年轻学者,而且它的研究课题同工业的发展紧密联系,后来形成德国科学研究的一个十分好的传统。在研究所的支持者中有德国的大企业家、大发明家西门子(Sir William Siemens,1823-1883)他与亥姆霍兹是柏林物理协会的第一批会员,是老朋友。亥姆霍兹担任德国物理协会会长达数十年之久。被人称为“德国物理的宰相”。
焦耳的热功当量实验
焦耳(James Prescott Joule,1818-1889)是一位英国富有的酿造商之子,他的经济条件可以提供他终生做研究工作。焦耳自幼身体虚弱,脊柱曾受过伤,因此他一心读书研究,他父亲为他提供了一个家庭实验室。1835年他认识了曼彻斯特大学的教授道尔顿,受到过后者的指导,焦耳的成功主要是靠自学的。焦耳对数学的知识很少,他的研究主要是靠测量。 1840年他经过多次测量通电的导体,发现电能可以转化为热能,并且得出一条定律:电导体所产生的热量与电流强度的平方、导体的电阻和通过的时间成正比。他将这一定律写成一篇论文《论伏打电生热》。
后来焦耳继续探讨各种运动形式之间的能量守恒与转化关系,1843年他发表了论文《论水电解时产生的热》与《论电磁的热效应和热的机械值》。特别在后一篇论文中,焦耳在英国学术会议上宣称:“自然界的能是不能毁灭的,那里消耗了机械能,总能得到相当的热,热只是能的一种形式。”
此后焦耳不断改进测量方法,提高测量精度,最后得到了一个被称为“热功当量”的物理常数,焦耳当时测得的值是423.9 千克米/千卡。现在这个常数的值是418.4。后人为纪念他,在国际单位制中采用焦耳为热量的单位,取1卡=4.184焦耳。
4. 小结
只有在功与能的概念变得清晰、热量于温度能够区分,同时对它们能够精确量度,也只有热力机械的走向实用为人们所熟悉,并且在大量永动机的失败条件下,能量守恒定律发现的条件才趋于成熟。
即使这样,人们对先知先觉者的理解也是相对缓慢的。迈尔的遭遇就说明这一点。
能量守恒定律的重要性
能量守恒定律至今仍然是力学乃至整个自然科学的重要定律。不过它仍然会发展。1905年爱因斯坦(Albert Einstein,1879-1955)发表了阐述狭义相对论的着名论文《关于光的产生和转化的一个启发性的观点》中揭示了质能守恒定律,即在一个孤立系统内,所有粒子的相对论动能与静能之和在相互作用过程中保持不变,称为质能守恒定律。

⑽ 动能定理\动量定理

在经典力学范围内,动量定理、动能定理都没有条件限制!!!
但是,作为高中学生,我们学习过程中,还是应该考虑什么情况下适用(注意,是适用,即适合于运用)动量定理,什么情况下适用动能定理。
简单地说:动量定理是涉及时间问题时适用,而动能定理,则是涉及位移问题时用,而且研究的是系统与外界的相互作用时使用。不象两个守恒定律,研究的是系统内部的动量(或动能)守恒问题。

与为什么历史上把动能叫做活力相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:974
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059
© Arrange www.upscalepup.com 2012-2022
温馨提示:资料来源于互联网,仅供参考