导航:首页 > 人文历史 > 如何基于历史数据预测

如何基于历史数据预测

发布时间:2023-04-02 02:45:19

A. sas中怎么根据历史数据预测未来数值

用这个过程步就可以了,首先你得逗谨确认数据中有时间这个维度的变量.
PROC FORECAST
DATA = WORK.TMP1TempTableNewTimeID
OUT=WORK.FCS0Forecast_N_DIS(LABEL="“work._N_DIS”的预测")
OUTALL
METHOD=STEPAR /*STEPAR表示逐步自回归,可修改*/
INTERVAL=MONTH /*表示观测间的时间间隔为每月,可修改*/
LEAD=12
TREND=2
ALPHA=0.05
;
ID NewTimeID/*这里填写嫌指悔你的时间或日期变量*/
;
VAR forcastvar /*这里填写你要预测的变量*/
;
BY typevar;/*这里填写你要分组的变量*/
FORMAT
NewTimeID MONYY5.;/*对芹正日期或时间变量进行格式化*/

RUN;

B. 如何利用历史数据来预测一只股票的走势(只做理论思考)

说点简单点的,但实用性并不算太强的一个思路给你参考一下吧!
可从长期走势看,也就是之前的历史走势是如何的,在过去的一年里走势整体来说是下跌的还是上涨的,还是震荡盘整的!还是先跌后涨的!
如果是整体下跌的,那连续下跌一年,那未来就相对肯定会出现一轮上涨,且风险较低利益较大。只是需要耐心去等待启动!
如果是震荡盘整,那就要看震荡盘整前是下跌的还是上涨的,如果是下跌的,那这盘整结束后也很大可能出现一轮上涨!如果震荡盘整前是上涨的,那就要看连续涨幅有多大,如果超过100%,那这个震荡盘整结束后那很大可能会是下跌的!
理论上,一个走势对应多个可能,而这多个可能还可衍生出其它多种可能,所以,思路就是这样,就不详细给你讲了! 你分给得太少,哈哈!

C. 如何根据历史不同价格下的销售数据来预测未来某一个价格下的的销售,例如超市订货的预测分析

那你应该采用 时间序列分析方法之趋势外推法,
但你要有之前连续几年的数据,
并且你要把价格波动的规律和影响价格的因素考虑进去!

D. 数据分析的步骤是什么

1.问题定义
比较典型的场景是我们需要针对企业的数据进行分析,比如公司通常会有销售数据、用户数据、运营数据、产品生产数据……你需要从这些数据里获得哪些有用的信息,对策略的制定进行指导呢?又比如你需要做的是一份市场调研或者行业分析,那么你需要知道你需要获得关于这个行业的哪些信息。
首先你需要确定去分析的问题是什么?你想得出哪些结论?
比如某地区空气质量变化的趋势是什么?
王者荣耀玩家的用户画像是什么样的?经常消费的是那类人?
影响公司销售额增长的关键因素是什么?
生产环节中影响产能和质量的核心指标是什么?
如何对分析用户画像并进行精准营销?
如何基于历史数据预测未来某个阶段用户行为?
这些问题可能来源于你已有的经验和知识。比如你已经知道每周的不同时间用户购买量不一样,那么你可以通过分析得出销量和时间的精确关系,从而精准备货。又比如你知道北京最近几年的空气质量是在变坏的,可能的因素是工厂排放、沙尘暴、居民排放、天气因素等,那么在定义问题的时候你就需要想清楚,需要针对哪些因素进行重点分析。
有些问题则并不清晰,比如在生产环节中,影响质量的核心指标是什么,是原材料?设备水平?工人水平?天气情况?某个环节工艺的复杂度?某项操作的重复次数?……这些可能并不明显,或者你是涉足新的领域,并没有非常专业的知识,那么你可能需要定义的问题就需要更加宽泛,涵盖更多的可能性。
问题的定义可能需要你去了解业务的核心知识,并从中获得一些可以宽消帮助你进行分析的经验。从某种程度上说,这也是我们经常提到的数据思维。数据分析很多时候可竖慧以帮助你发现我们不容易发现的相关性,但对问题的精确定义,可以从很大程度上提升数据分析的效率。
如何更好地定义问题?
这就需要你在长期的训练中找到对数据的感觉,开始的时候你拿到特别大的数据,有非常多的字段,可能会很懵逼,到底应该从什么地方下手呢?
但如果有一些经验就会好很多。比如,你要研究影响跑步运动员速度的身体因素,那么我们可能会去研究运动员的身高、腿长、体重、甚至心率、血压、臂长,而不太会去研究运动员的腋毛长度,这是基于我们已有的知识。又比如我们要分析影响一个地方房价的因素,那么我们可能会有一些通用的常识,比如城市人口、地理位置、GDP、地价、物价水平,更深入的可能会有产业格局、文化状态、气候情况等等,但一般我们不会去研究城市的女孩长相,美女占比。
所以当你分析的问题多了之后,你就会有一些自己对数据的敏感度,从而养成用数据分析、用数据说话的习惯。这个时候你甚至可以基于一些数据,根据自己的经验做出初步的判断和预测(当然是不能取代完整样本的精准预测),这个时候,你就基本拥有数据思维了。

2.数据获取
有了具体的问题,你就需要获取相关的数据了。比如你要探究北京空气质量变化的趋势,你可能就需要收集北京最近几年的空气质量数据、天气数据,甚至工厂数据、气体排放数据、重要日程数据等等。如果你要分析影响公司销售的关键因素,你就需要调用公司的历史销售数据、用户画像数据、广告投放数据等。
数据的获取方式有多种。
一是公司的销售、用户数据,可以直接从企业数据库调取,所以你需要SQL技能去完成数据提取等的数据库管理工作。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作余巧答。
第二种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。当然这种方式也有一些缺陷,通常数据会发布的比较滞后,但通常因为客观性、权威性,仍然具有很大的价值。
第三种是编写网页爬虫,去收集互联网上的数据。比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析,这算是非常靠谱的市场调研、竞品分析的方式了。
当然,比较BUG的一点是,你通常并不能够获得所有你需要的数据,这对你的分析结果是有一定影响的,但不不影响的是,你通过有限的可获取的数据,提取更多有用的信息。

3.数据预处理
现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据分析,或分析结果差强人意。数据预处理有多种方法:数据清理,数据集成,数据变换,数据归约等。把这些影响分析的数据处理好,才能获得更加精确地分析结果。
比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。
那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
当然在这里我们还可能会有数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,能够帮助我们掌握数据的分布特征,是进一步深入分析和建模的基础。

4.数据分析与建模
在这个部分需要了解基本的数据分析方法、数据挖掘算法,了解不同方法适用的场景和适合的问题。分析时应切忌滥用和误用统计分析方法。滥用和误用统计分析方法主要是由于对方法能解决哪类问题、方法适用的前提、方法对数据的要求不清等原因造成的。
另外,选择几种统计分析方法对数据进行探索性的反复分析也是极为重要的。每一种统计分析方法都有自己的特点和局限,因此,一般需要选择几种方法反复印证分析,仅依据一种分析方法的结果就断然下结论是不科学的。
比如你发现在一定条件下,销量和价格是正比关系,那么你可以据此建立一个线性回归模型,你发现价格和广告是非线性关系,你可以先建立一个逻辑回归模型来进行分析。
一般情况下,回归分析的方法可以满足很大一部分的分析需求,当然你也可以了解一些数据挖掘的算法、特征提取的方法来优化自己的模型,获得更好地结果。

5.数据可视化及数据报告的撰写
分析结果最直接的结果是统计量的描述和统计量的展示。
比如我们通过数据的分布发现数据分析工资最高的5个城市,目前各种语言的流行度排行榜,近几年北京空气质量的变化趋势,避孕套消费的地区分布……这些都是我们通过简单数据分析与可视化就可以展现出的结果。
另外一些则需要深入探究内部的关系,比如影响产品质量最关键的几个指标,你需要对不同指标与产品质量进行相关性分析之后才能得出正确结论。又比如你需要预测未来某个时间段的产品销量,则需要你对历史数据进行建模和分析,才能对未来的情况有更精准的预测。
数据分析报告不仅是分析结果的直接呈现,还是对相关情况的一个全面的认识。我们经常看到一些行业分析报告从不同角度、深入浅析地剖析各种关系。所以你需要一个讲故事的逻辑,如何从一个宏观的问题,深入、细化到问题内部的方方面面,得出令人信服的结果,这需要从实践中不断训练。

数据分析的一般流程总的来说就是这几个步骤:问题定义、数据获取、数据预处理、数据分析与建模、数据可视化与数据报告的撰写。

E. 如何利用基于机器学习的模型进行金融市场预测

基于机器学习的模型可以用于金融市场预测,以下是一些常用的方法:
1.时间序列预测模型:基于历史数据来预测未来时间点的金弊绝枯融市租洞场走势,如ARIMA、LSTM等。这些模型可以学习历史数据中的季节性和周期性等特征,然后预测未来的价格变化。
2.基于宏轿统计学的建模:通过分析关键经济指标、政策变化等来预测市场的走势,如回归分析和因子模型。
3.机器学习分类模型:根据历史数据对市场进行分类,如支持向量机、决策树等。这些模型可以学习历史数据中的模式,并基于这些模式对未来的市场进行分类。
4.情感分析模型:利用自然语言处理技术,分析金融市场相关新闻和社交媒体数据中的情感,例如利用情感分析模型分析新闻报道的情感来预测股市。
以上模型需要根据具体的预测需求进行选择,在模型选择时需考虑数据质量、特征选择、模型调参等方面。

F. 求助:通过历史数据如何预测今后销售额

就是一个散布图,然后做个正态分布,再根据市场行情,大概的估算是没有问题的。

G. 27.什么是利润预测利润预测包括哪些基本方法

什么是利润预测?利润预测包括哪些基本方法答案如下:

利润预测是指按照影响公司利润变动的各种因素,对公司未来可能达到的利润水平和变化趋势所进行的科学预计和推测;或者按照实现目标利润的要求,对未来需要达到的销售量或销售额所进行的科学预计和推测。

利润预测的方法主要有本量利分轿败析法、经营杠杆系数法、敏感性分析法和相关比率(销售利润率、销售成本利润率、利润增长百分率)分析法。

2、市场研究法:该方法通过市场调查和分析来预测未来的销售额和利润。企业可以对目标市场进行调查,了解市场需求和竞争情况,并通过市场占有率等指标来预测未来的销售额和利润。

3、现金流量法:该方法通过预测企业未来的现金流入和现金流出情空卖况,进而推断出未来的净利润。该方法适用于企业资产配置比较复杂、现金流量变化较大的情况下。

4、行业分析法:该方法通过对行业发展趋势和竞争格局的分析,来预测企业未来的利润情况。企业可以借助行业报告和调查数据等资料,对行业发展趋势、政策变化以及市场需求变化等因素进行深入分析,并结合自身的实际情况进行预测。

H. 用什么方法统计历史数据,预测未来结果

可以从历史数据中总结出规律,但谁也不能预测未来。
有测不准原理。

I. 根据以前的数据预测未来的行为用的是什么数据挖掘方法

数据挖掘(Data Mining)就是从大量数据中发现潜在规律、提取有用知识的方法和技术。因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD) ,就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI(商业智能)。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。

数据挖掘的主要功能
1.分类:按照分析对象的属性、特征,建立不同的组类来描述事物。例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。
2.聚类:识别出分析对内在的规则,按照这些规则把对象分成若干类。例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。
3.关联规则和序列模式的发现:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。与关联不同,序列是一种纵向的联系。例如:今天银行调整利率,明天股市的变化。
4.预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。
5.偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。
需要注意的是:数据挖掘的各项功能不是独立存在的,在数据挖掘中互相联系,发挥作用。

数据挖掘的方法及工具
作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:
(1) 传统统计方法:① 抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。② 多元统计分析:因子分析,聚类分析等。③ 统计预测方法,如回归分析,时间序列分析等。
(2) 可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。

职业能力要求
基本能力要求
数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。
一、专业技能
硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数陆大帆据库系统开发经验
熟练掌握常用的数据挖掘算法
具备数理统计理论基础,并熟悉常用的统计工具软件
二、行业知识
具有相关的行业知识,或者能够很快熟悉相关的行业仿凳知识
三、合作精神
具有良好的团队合作精神,能够主动和项目中其他成员紧密合作
四、客户关系能力
具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望
具有良好的知识转移能力,能够尽快地让模型维护人员早雹了解并掌握数据挖掘方法论及建模实施能力

进阶能力要求
数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。
具有数据仓库项目实施经验,熟悉数据仓库技术及方法论
熟练掌握SQL语言,包括复杂查询、性能调优
熟练掌握ETL开发工具和技术
熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术
善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案

应用及就业领域
当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation & Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问着名的亚马逊网上书店(),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book also bought”,这背后就是数据挖掘技术在发挥作用。
数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, technique second”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。

数据采集分析专员
职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。
求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。

市场/数据分析师
1. 市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来, Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian Marketing Association)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。
2. 行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。

现状与前景
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较着名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。
据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。
根据IDC(International Data Corporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。
现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。
众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!

职业薪酬
就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。

职业认证
1、SAS认证的应用行业及职业前景
SAS全球专业认证是国际上公认的数据挖掘和商业智能领域的权威认证,随着我国IT环境和应用的日渐成熟,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,为您在数据挖掘、分析方法论领域积累丰富经验奠定良好的基础,帮助您开辟职业发展的新天地。
2、SAS认证的有效期
目前SAS五级认证没有特定有效期,但是时间太久或版本太老的认证证书会有所贬值。
3、五级认证的关系
五级认证为递进式关系,即只有通过上一级考试科目才能参加下一级认证考试。
4、SAS全球认证的考试方式
考试为上机考试,时间2个小时,共70道客观题。

相关链接
随着中国物流行业的整体快速发展,物流信息化建设也取得一定进展。无论在IT硬件市场、软件市场还是信息服务市场,物流行业都具有了一定的投资规模,近两年的总投资额均在20-30亿元之间。政府对现代物流业发展的积极支持、物流市场竞争的加剧等因素有力地促进了物流信息化建设的稳步发展。
易观国际最新报告《中国物流行业信息化年度综合报告2006》中指出,中国物流业正在从传统模式向现代模式实现整体转变,现代物流模式将引导物流业信息化需求,而产生这种转变的基本动力来自市场需求。报告中的数据显示:2006-2010年,传统物流企业IT投入规模将累计超过100亿元人民币。2006-2010年,第三方物流企业IT投入规模将累计超过20亿元人民币。
由于目前行业应用软件系统在作业层面对终端设备的硬件提出的应用要求较高,而软件与硬件的集成性普遍不理想,对应性单一,因此企业将对软件硬件设备的集成提出更高要求。
物流行业软件系统研发将更多的考虑运筹学与数据挖掘技术,专业的服务商将更有利于帮助解决研发问题。
物流科学的理论基础来源于运筹学,并且非常强调在繁杂的数据处理中找到关联关系(基于成本-服务水平体系),因此数据挖掘技术对于相关的软件系统显得更为重。

阅读全文

与如何基于历史数据预测相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:949
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050