⑴ 最早的电子手表是什么时候发明的
世界第一只石英表:精工SEIKO QUARTZ ASTRON,1969年。
世界上的第一只手表是于1868年由百达翡丽制造给匈牙利的Koscowicz伯爵夫人的。但这种形式的钟表,在当时并不流行。
1911年卡地亚正式将这种形式的钟表镇液商业化,推出了着名的Santos手表。自此以后,手表便开始普及。
经历一个世纪的改进,1967年瑞士人首度将石英钟做成石英表,手表之后也由手动/自动上发条的形式,发展到用石英、电子等动力显示时间。
第一只石英表在1969年首度出现。在这一年,日本的精工公司发现了如何将石英制成音叉的方法。第一个进入生产石英手表是精工35平方天文学,发布于1957年由汉密尔顿钟表公司的兰开斯特,宾夕法尼亚州。和音叉会循某种规律振动一样,当石英晶体受到电池电力影响时,它也会产生规律的振动。
石英晶体每秒的振动次数高达32768次,我们可以设计简易的电路来计算它振动的次数,当它数到32768次时,电路会传出讯息,让秒针往前走一秒。
因为石英的振动相当规律,即使是便宜的石英表,一天之内的误差率也不会超过1秒。最早的振荡电路是由电感器和电容器构成,称为LC电路,但其频率稳定性却不大好,后来,科学家们用石英晶体代替LC振荡器,就大大提高了频率稳定性。石英为规则的六边形晶体。在石英晶体上按一定方位切割下的薄片叫做石英晶片。石英晶片有一个奇妙的特性:若晶片上加以机械力,则在相应的方向上就会产生电场。这种物理现象称为“压电效应”。当在石英晶片的极板上接上交流电场。当外加交变电压的频率与石英晶片的固有频率相等时,就会缺桐产生共振。这种现象称为“压电共振”。利用这种稳定的振荡特性,人们就创造出了精度极高的电子表和石英钟。
电子表御扮物是20世纪50年代才开始出现的新型计时器。最早的一款电子表被称做“摆轮游丝电子表”,它诞生于1955年。这种手表用电磁摆轮代替发条驱动,以摆轮游丝作为振荡器,微型电池为能源,通过电子线路驱动摆轮工作。它的走时部分与机械手表完全相同,被称为第一代电子手表。
1960年,美国布洛瓦公司最早开始出售“音叉电子手表”。这种手表以金属音叉作为振荡器,用电子线路输出脉冲电流,使机械音叉振动。它比摆轮式电子手表结构简单,走时更精确,被称为第二代电子手表。
1969年,日本精工舍公司推出了世界上最早的石英电子表。石英电子表的出现,立刻成为了钟表界主流产品,它走时精确,结构简单,轻松地将一、二代电子表,甚至机械表淘汰出局。石英表又称“水晶振动式电子表”,因为它是利用水晶片的“发振现象”来计时的。当水晶受到外部的加力电压,就会产生变形和伸缩反应;如果压缩水晶,便会使水晶两端产生电力。这样的性质在很多结晶体上也可见到,称为“压电效果”。石英表就是利用周期性持续“发振”的水晶,为我们带来准确的时间。
1914年第一次世界大战爆发,各国军方意识到“免手提”腕表的重要性,这才启发了一般民众对手戴腕表的热切需求。1926年,发明了第一块自行上弦的腕表,从1960年起,传统的圆形表样普遍受到接受。瑞士对腕表的进一步改进,就是把怀表所具有的计时、日历、陀飞轮及自动发条装置加以微型化,而装设于腕表上。1952年在美国、法国和瑞士各生产出一块电子表。1967年,纳沙泰尔的电子钟表中心开发出第一块石英手腕表,并在1970年以不同瑞士品牌的名字开始大量生产。自此,新的技术开始快速开发。
⑵ 电子手表是什么时候出现的
电子手表是本世纪50年代才开始出现的新型计时器。最早的一种电子手表是美国埃尔近公司和利普手表公司在1952年共同公布的电子手表原型。这种手表用电磁摆轮代替发条驱动,但走时部分与机械手表完全相同,被称为第一代电子手表。1960年美国布洛瓦公司最早开始出售“阿克屈隆”牌音叉电子手表。这种尘斗手表以音叉的振荡频率作为走时的基准,比摆轮式电子手表结构简单,走时较精确,被称为第二代电子手表。1969年12月,日本精工舍公司推出了35SQ型电子手表。这是世界上最早的石英电子手表,这种手表以石英的固有振荡频率为走时基准,通过电子线路,控制一台微型电机带动指针,被称为第三代电子手表。石英源锋电子手表走时精确,结构简单,很多性能指标都超过了机械手表,因此很受顾客欢迎。它出现之后不久,就把第一、第二代电子手表淘汰了。
从第一代到第三代电子手表都保留了传统手表的指针表盘式表面,继之而起的第四代电子手表——数字显示式石英电子手表却完全脱离了机械手表的形式,最终形成了一种全新的时计。数字显示电子手表采用发光二极管或者液晶为显示元件,直接以数字表示时间。整个手表由石英晶体、集成电雹兄晌路、显示屏以及电池构成,没有任何走动元件,所以又被称为“全电子手表”。世界上最早的全电子手表是美国汉弥尔顿公司在1972年开始出售的波沙牌(Pulsar)数字显示电子手表。该表以发光二极管为显示元件,当时售价为2000美元。
全电子手表走时比指针式石英电子手表更精确,结构比指针式石英电子手表更简单,还具有特别良好的防磁、防震性能。而且,除了显示时间外,数字显示式电子手表还可以具有计秒,显示日期、星期、起闹及计算、储存数据、量血压、测脉搏、报警等等多种功能,还出现了与收音机、电视机组合在一起的电子表。
⑶ 最早的电子手表是在哪个国家研制成功的
电子手表是20世纪50年代才开始出现的新型计时器,它在温度25~28℃时,一昼夜计时误差在一秒以内,即使当温度至0℃以下或50℃以上时,每昼夜也才会慢两秒钟。但100多年前我们经常使用的机械手表,由于受温度、气压、地球引力的影响,加上本身机械结构和装配过程中的误差,它的每日走时误差一般也有3~5秒左右。由此可看到,电子手表的发明在精确时间方面有着多么大的贡献。
1952年,英国发明了电动表,用化学电池作能源,代替机械表中的发条。由于化学电池的能量较稳定,走时的精确度就得到了提高。但由于电池的电能是通过机械接点传给摆轮的,而机械接蠢梁册点开关次数多了很容易损坏,所以这种表未能得到推广。然而,它对传统机械手表的结构进行的变革、把手表与电挂上钩的做法却打开了人们的思路,促使电子手表应运而生。
真正意义上的最早的电子手表应是1953年由瑞士试制成功的音叉式电子手表。大家知道,只要把音叉轻轻一敲,音叉就会发生振动而发出一定频率的声音。音叉式电子手表就是利用这个特性制成的。它用一个小音叉和晶体三极管无接点开关电路组成音叉振荡系统,来代替摆轮游丝振动系统。音叉的振动频率为每秒300赫兹,所以这种表走动时听不到嘀嗒声而只发出轻微的嗡嗡声,音叉振荡系统产生的时间信号推动秒针、分针、时针转动以指示时间。这种表走时误差每天稳定在2秒以内。1960年美国布洛瓦公司最早开始出售“阿克屈隆”牌音叉电子手表。
1963年由瑞士研制成功摆轮式电子手表。它与电动手表不同的地方是用晶体管、电阻等元件组成无接点开关电路,来代替易损坏的机械接点。由于这种手表不用发条,齿轮系统受力小,磨损较少,因而使用寿命较长,走时精确度比电动手表略高。这种手表于1967年投放市场后,曾在欧洲流行一时。
1969年12月,日本精工舍公司推出了35SQ型电子手表。这是世界上最早的石英电子手表带宏,这种手表以石英的固有振荡频率为走时基准,通过电子线路,控制一台微型电机带动指针,很多性能指标都超过了机械手表,因此很受顾客欢迎。
随着人类科技的发展,最终形成了一种全新的时计。数字显示电子手表采用发光二极管或者液晶为显示元件,直接以数字表示时间。整个手表由石英晶体、集成电路、显示屏以及电池构成,没有任渣老何走动元件,所以又被称为“全电子手表”。它走时比指针式石英电子手表更精确,结构比指针式石英电子手表更简单,还具有特别良好的防磁、防震性能。世界上最早的全电子手表是美国汉弥尔顿公司在1972年开始出售的波沙牌数字显示电子手表。
⑷ 电钟和电子表有怎样的发展过程
机械钟的走时往往因温度等的变化而有快慢。一般来说,温度偏高走时偏慢,温度偏低,走时就偏快。现在,在机关、工厂和学校,机械钟已经被电钟所代替,因为用电流推动的电钟,结构更加简单,走时更加准确。
用电做喊明袭动力的钟叫电钟。最简单的用交流电驱动电钟是一部结构槐瞎简单的电动机。它带动一系列的齿轮变速装置,驱动表针郑兄指示时间。
北京火车站有只钟叫“子母钟”,有一只母钟,还有一只子钟。母钟的摆不停地来回摆动,每隔一分钟就向外转送电流。当子钟接受到一次脉冲电流,机械装置就驱使分针跳上一格。它不用安装巨大的摆和发条,它的动力换成了电。
1952年,美国发明了电动表,用化学电池作动力,代替机械手表中的发条。化学电池提供的能量比较稳定,所以走时精度有了提高。但是,由于电池的电能是经由机械接点传给摆轮的,而机械接点开关次数多了,很容易损坏。这种表没能推广。可是,它为手表指出了方向,手表以电池作动力,不久电子手表应时而生,得到飞速发展。
半导体发明后,电子手表已经历了4代的演变。
1963年,瑞士研制成了“摆轮游丝式电子手表”,这是第一代。这同电动手表不同的地方,是用晶体管、电阻等元件构成无接点开关电路,来代替易损坏的机械接点。它不需用发条,齿轮系统受力小,磨损较少,因此使用寿命长,走时精度比电动手表略高,它在60年代,曾风行了世界市场。
另一种音叉式电子手表,也是用电池作动力的。它用一个小音叉和晶体三级管无接点开关电路构成的音叉振荡系统来代替摆轮游丝振动系统。原来,只要把音叉轻轻一敲,音叉就会发出振动而发出一定频率的声音。这种会唱歌的“摆”,在能干的电子线路的伴奏下,唱出了优美的时间之歌。音叉的振动频率为每秒300赫兹,它走动时发出轻微的嗡嗡声。它产生的时间信号,推动了秒针、分针、时针转动,指示出时间来。这种表误差小,每天在2秒钟以内。这是第二代。
这两种电子手表比起机械表来,最大的差异是动力的不同,而主要影响走时精度的振动系统,依然是机械振动。而第三、第四代电子手表,都是对振荡系统进行改革后的产物。
60年代,出现了半导体集成电路,使电子元件微型化,人们才制成了石英电子手表。这是第三代,比机械手表走时精度高几十倍,每年误差60~180秒钟。
70年代,出现了液晶显示式石英电子手表,这是第四代,它每年误差不到30秒钟,走时精度就更高了。
⑸ 从古代到现在的钟表的发展史
历史
原始人凭天空颜色的变化、太阳的光度来判断时间。古埃及发现影子长度会随时间改变,发明日晷在早上计时,他们亦发现水的流动需要的时间是固定的,因此发明了水钟。古代中国人亦有以水来计时的工具——铜壶滴漏。
中国除了用水流来计时外,中国古代民间亦有利用燃点线香来计量时间。龙舟报时更香就是利用烧香来计时的仪器,它更设有定时响闹的作用。龙舟上挂了数条两端系着金属球的幼线,线下放了燃着的香。
每隔一段时间,香便会烧断一条线子,当金属球跌进下面的盛器时,便会发出报时响闹。这种烧香时计最早见于宋代的文献中。用更香来计算时间的精度不高,但由于它简单易行,极之适合民间使用,所以曾经十分流行。据文献记载有些更香可燃烧一昼夜,有些甚至可以燃烧至一个月。
公元1088年,宋朝的科学家苏颂和韩工廉等人制造了史上首座以水力作自动化机械操作的水运仪象台,它是把浑仪、浑象和机械计时器组合起来的装置。
它以水力作为动力来源,具有科学的擒纵机构,高约12米,7米见方,分三层:上层放浑仪,进行天文观测;中层放浑象,可以模拟天体作同步演示;下层是该仪器的心脏,计时、报时、动力源的形成与输出都在这一层中。
公元1276年,中国元代的郭守敬制成大明灯漏。它是利用水力驱动,通过齿轮系及相当复杂的凸轮结构,带动木偶进行“一刻鸣钟、二刻鼓、三钲、四铙”的自动报时。自宋起,十二时辰分初正即廿四小时系统,一刻即今天的十五分钟,其准确度较德国之桌钟早三百多年。
公元1283年在英格兰的修道院出现史上首座以砝码带动的机械钟。
13世纪意大利北部的僧侣开始建立钟塔(钟楼),其目的是提醒人祷告的时间。
公元1360年詹希元创制“五轮沙漏”,以齿轮、时刻盘合成。
16世纪中在德国开始有桌上的钟。那些钟只有一支针,钟面分成四部分,使时间准确至最近的十五分钟。
公元1657年,惠更斯发现摆的频率可以计算时间,造出了第一个摆钟。1670年英国人William Clement发明锚形擒纵器。
公元1797年,美国人伊莱·泰瑞获得一个钟的专利权。他被视为美国钟表业的始祖。
公元1840年,英国的钟表匠亚历山大·贝恩发明了电钟。
公元1946年,美国的物理学家伊西多·拉比博士弄清楚了原子钟的原理。于两年后,创造出了世界上第一座原子钟,原子钟至今也是最先进的钟。它的运转是借助铯、氢原子的天然振动而完成的,它可以在300年内都能准确运转,误差十分小。
18到19世纪,钟表制造业逐步实行了工业化生产。
20世纪,开始进入石英化时期。
21世纪,根据原子钟原理而研制的能自动对时的电波钟表技术逐渐成熟。
(5)电子表有多少年的历史事件扩展阅读:
一、字源
英语中的“Clock”源自拉丁语“clocca”,这个字于13世纪在欧洲出现。
在汉语上,“锺”与“钟”是两种不同的事物,“锺”原本是指一种酒器,“钟”是一种乐器。中国大陆、新加坡及马来西亚的简化字表中,“锺”与“钟”合并成“钟”,另外“锺”字在有歧义时方能使用,以作区别。
“钟”古作乐器,至少唐代具时计作用,古分夜五更,每更敲钟,故钟生时计之意,属于衍生字义。日本使用时计作钟的汉字载体。于汉字文化圈中时计皆具有钟的意义。
二、类型
手表亦可以算是钟的一种,但一般的钟都是指较大型,不是常常可以随身携带的。
1按计时原理:
水钟:利用水的流动计时。
沙漏:利用沙的流动计时。
日晷:利用一物体影子的变化计时。
摆钟:利用单摆的简谐运动计时。
日晷沙漏
漏壶:利用水漏出后,水面的高低来计时。
火钟:靠燃烧某物,观看剩余量得知时间。
原子钟:它以原子共振频率标准来计算及保持时间的准确
石英钟:利用石英晶体电压特性的精确时钟。
电波钟:是指可以通过接收授时无线电波进行即时时间校准的时钟。
2、按外观:
二进制时钟:以二进制方式显示的时钟。
老爷钟:长型,有钟摆的的时钟。
布谷鸟钟:在特定时刻会出现布谷鸟,发出悦耳的“咕咕”叫声,19世纪后半叶起,成为世界闻名的纪念品和外国人眼中德国的一种标志。
投影钟:其钟面是用投影方式投射到其他表面的时钟。
3、按功用:
闹钟:可设定在指定时间响闹的时钟。
天文钟:能同时显示天文信息的时钟。
世界钟:能显示全世界各大城市时间的时钟。
棋钟:两组对应的时钟,比别计算如国际象棋比赛二位对手使用的时间。
足球赛钟(45分钟):计算足球赛进行的时间。
三、时间标准
有些科学研究需要非常准确的时间,在校正时钟时也需要一个时间的标准。像原子中在能阶之间的电子跃迁之类的过程,其发生周期非常固定,因此若计算这类过程的周期,即可得到准确的时间,这就是原子钟。
这类的时钟体积庞大,价格昂贵,且需要在受控环境下运作,不过精确度会远高于一般的需求,一般会在计量学的标准实验室中才会有这类设备。