① 导数符号怎么打
半角状态下的双引号键。但是这个符号打出来太直了。
word 公式中用组合键 “Ctrl + Alt + 双引号键”打导数符号,好看且带有斜度。
d/dx是一个算子,它的含义就是对某某某进行对x的求导运算,dy/dx=(d/dx)y,也就是对y进行对x的求导运算。等式左边的意思就是对e^y +xy -e进行对x的求导运算。
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
(1)数学df怎么打扩展阅读:
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
② "≡"这个字是怎么打出来的
你有搜狗输入法的话,有个快捷键,ctrl+shift+B,出现一个对话框,在特殊符号里面,“数学/单位”里面有的
③ 统计中df怎么算
公式为:df=n-k。其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。用于抽样分布中。
SPSS(),“统计产品与服务解决方案”软件。最初软件全称为“社会科学统计软件包”(),但是随着SPSS产品服务领域的扩大和服务深度的增加。
SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,标志着SPSS的战略方向正在做出重大调整。为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称SPSS,有Windows和MacOSX等版本。
④ 请问逻辑学或者数学中的df指什么
定义。是define的缩写。也可以缩写为def或者三角形或者冒号。
例如,S =def x^2+y^2,表示S定义为x^2+y^2,以后出现S就意味着它代表这个平方和。
⑤ df是什么意思
微分
可以用微分形式来讲,这样又严格又简明:
对任意映射f:M->N,定义df是在切空间诱导的线性映射,对f是实函数的情形,f:
M->R,任一点p∈M,
df基本上就是该点函数图像的切平面,任意M上的切向量X,
df(X)就是f在X的方向导数。
x只是一个普通的函数——坐标函数,就是说,任一点p,
x(p)定义为p的横坐标(或第一个坐标)
。
所以如果你理解了dy,你就理解了dx,在一元微积分的情形,M=N=R,y=f(x)把x轴上的点映到y轴上的点,但是一般这映射不是线性的,比如f(x)=x^2,就不是一次的。但是只要f足够好(可导),我们就可以在任一点附近用线性映射来近似,比如当x=1时,g(x)=f'(1)*x=2x就是对x=1附近的f(x)=x^2的(一阶)近似,近似的精度用有限增量公式表达:f(x)-f(1)=g(x)+o(x-1)。这个近似是线性的,这就是由f在切空间诱导的那个。
f的微分就定义成df,所以dx就是x(这个函数)的微分。
然后根据微分形式的不变性(就是链式法则),定义微分形式df的积分为f的普通黎曼积分。
这时候,因为微分是在切空间的近似,确实可以把微分df想象成函数的小变动(因为有限增量公式只有在自变量变动很小时近似才有效,而变动趋于0时,这近似就趋于完美)。同样的dx可以想象成x这个函数的小变动。这对于物理学家来说,他们就是这么思考问题的,很方便而且很有效。
这样的一个讲法,就既得到了数学的严格性,不用引入任何含糊其辞的概念,又能学习使用物理学家的考虑问题的方式。
⑥ ღ 这个符号怎么打
1:如下图,切换到电脑的中文输入法。
(6)数学df怎么打扩展阅读:
特殊字符是相对于传统或常用的符号外,使用频率较少字符且难以直接输入的符号。比如数学符号;单位符号;制表符等。种类繁多,很多输入法的小键盘可以输入部分特殊符号。
⑦ 求一个符号怎么打,看图
数学符号及读法大全
常用数学输入符号: ≈≡≠= ≤≥< > ≮≯∷±+ - ×÷/ ∫∮∝∞∧∨∑∏∪∩∈∵∴ ⊥‖∠⌒ ≌∽√ ()【】{} ⅠⅡ⊕⊙∥α β γ δ ε ζ η θ Δ
Α
α
alpha
alfa
阿耳法
Β
β
beta
beta
贝塔
Γ
γ
gamma
gamma
伽马
Δ
δ
deta
delta
德耳塔
Ε
ε
epsilon
epsilon
艾普西隆
Ζ
ζ
zeta
zeta
截塔
Η
η
eta
eta
艾塔
Θ
θ
theta
θita
西塔
Ι
ι
iota
iota
约塔
Κ
κ
kappa
kappa
卡帕
∧
λ
lambda
lambda
兰姆达
Μ
μ
mu
miu
缪
Ν
ν
nu
niu
纽
Ξ
ξ
xi
ksi
可塞
Ο
ο
omicron
omikron
奥密可戎
∏
π
pi
pai
派
Ρ
ρ
rho
rou
柔
∑
σ
sigma
sigma
西格马
Τ
τ
tau
tau
套
Υ
υ
upsilon
jupsilon
衣普西隆
Φ
φ
phi
fai
斐
Χ
χ
chi
khai
喜
Ψ
ψ
psi
psai
普西
Ω
ω
omega
omiga
欧米
符号
含义
i
-1的平方根
f(x)
函数f在自变量x处的值
sin(x)
在自变量x处的正弦函数值
exp(x)
在自变量x处的指数函数值,常被写作ex
a^x
a的x次方;有理数x由反函数定义
ln x
exp x 的反函数
ax
同 a^x
logba
以b为底a的对数; blogba = a
cos x
在自变量x处余弦函数的值
tan x
其值等于 sin x/cos x
cot x
余切函数的值或 cos x/sin x
sec x
正割含数的值,其值等于 1/cos x
csc x
余割函数的值,其值等于 1/sin x
asin x
y,正弦函数反函数在x处的值,即 x = sin y
acos x
y,余弦函数反函数在x处的值,即 x = cos y
atan x
y,正切函数反函数在x处的值,即 x = tan y
acot x
y,余切函数反函数在x处的值,即 x = cot y
asec x
y,正割函数反函数在x处的值,即 x = sec y
acsc x
y,余割函数反函数在x处的值,即 x = csc y
θ
角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时
i, j, k
分别表示x、y、z方向上的单位向量
(a, b, c)
以a、b、c为元素的向量
(a, b)
以a、b为元素的向量
(a, b)
a、b向量的点积
a•b
a、b向量的点积
(a•b)
a、b向量的点积
|v|
向量v的模
|x|
数x的绝对值
Σ
表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n
M
表示一个矩阵或数列或其它
|v>
列向量,即元素被写成列或可被看成k×1阶矩阵的向量
<v|
被写成行或可被看成从1×k阶矩阵的向量
dx
变量x的一个无穷小变化,dy, dz, dr等类似
ds
长度的微小变化
ρ
变量 (x2 + y2 + z2)1/2 或球面坐标系中到原点的距离
r
变量 (x2 + y2)1/2 或三维空间或极坐标中到z轴的距离
|M|
矩阵M的行列式,其值是矩阵的行和列决定的平行区域的面积或体积
||M||
矩阵M的行列式的值,为一个面积、体积或超体积
det M
M的行列式
M-1
矩阵M的逆矩阵
v×w
向量v和w的向量积或叉积
θvw
向量v和w之间的夹角
A•B×C
标量三重积,以A、B、C为列的矩阵的行列式
uw
在向量w方向上的单位向量,即 w/|w|
df
函数f的微小变化,足够小以至适合于所有相关函数的线性近似
df/dx
f关于x的导数,同时也是f的线性近似斜率
f '
函数f关于相应自变量的导数,自变量通常为x
∂f/∂x
y、z固定时f关于x的偏导数。通常f关于某变量q的偏导数为当其它几个变量固定时df 与dq的比值。任何可能导致变量混淆的地方都应明确地表述
(∂f/∂x)|r,z
保持r和z不变时,f关于x的偏导数
grad f
元素分别为f关于x、y、z偏导数 [(∂f/∂x), (∂f/∂y), (∂f/∂z)] 或 (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k; 的向量场,称为f的梯度
∇
向量算子(∂/∂x)i + (∂/∂x)j + (∂/∂x)k, 读作 "del"
∇f
f的梯度;它和 uw 的点积为f在w方向上的方向导数
∇•w
向量场w的散度,为向量算子∇ 同向量 w的点积, 或 (∂wx /∂x) + (∂wy /∂y) + (∂wz /∂z)
curl w
向量算子 ∇ 同向量 w 的叉积
∇×w
w的旋度,其元素为[(∂fz /∂y) - (∂fy /∂z), (∂fx /∂z) - (∂fz /∂x), (∂fy /∂x) - (∂fx /∂y)]
∇•∇
拉普拉斯微分算子: (∂2/∂x2) + (∂/∂y2) + (∂/∂z2)
f "(x)
f关于x的二阶导数,f '(x)的导数
d2f/dx2
f关于x的二阶导数
f(2)(x)
同样也是f关于x的二阶导数
f(k)(x)
f关于x的第k阶导数,f(k-1) (x)的导数
T
曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt|
ds
沿曲线方向距离的导数
κ
曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds|
N
dT/ds投影方向单位向量,垂直于T
B
平面T和N的单位法向量,即曲率的平面
τ
曲线的扭率: |dB/ds|
g
重力常数
F
力学中力的标准符号
k
弹簧的弹簧常数
pi
第i个物体的动量
H
物理系统的哈密尔敦函数,即位置和动量表示的能量
{Q, H}
Q, H的泊松括号
以一个关于x的函数的形式表达的f(x)的积分
函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的面积
L(d)
相等子区间大小为d,每个子区间左端点的值为 f的黎曼和
R(d)
相等子区间大小为d,每个子区间右端点的值为 f的黎曼和
M(d)
相等子区间大小为d,每个子区间上的最大值为 f的黎曼和
m(d)
相等子区间大小为d,每个子区间上的最小值为 f的黎曼和
公式输入符号
≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√
+: plus(positive正的)
-: minus(negative负的)
*: multiplied by
÷: divided by
=: be equal to
≈: be approximately equal to
(): round brackets(parenthess)
[]: square brackets
{}: braces
∵: because
∴: therefore
≤: less than or equal to
≥: greater than or equal to
∞: infinity
LOGnX: logx to the base n
xn: the nth power of x
f(x): the function of x
dx: diffrencial of x
x+y: xplus y
(a+b): bracket aplus b bracket closed
a=b: aequals b
a≠b: a isn't equal to b
a>b : a is greater than b
a>>b: a is much greater than b
a≥b: a is greater than or equal to b
x→∞: approches infinity
x2: x square
x3: x cube
√ ̄x: the square root of x
3√ ̄x: the cube root of x
3‰: three peimill
n∑i=1xi: the summation of x where x goes from 1to n
n∏i=1xi: the proct of x sub i where igoes from 1to n
∫ab: integral betweens a and b
数学符号(理科符号)——运算符号
1.基本符号:+ - × ÷(/)
2.分数号:/
3.正负号:±
4.相似全等:∽ ≌
5.因为所以:∵ ∴
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)
7.集合类:∈(属于) ∪(并集) ∩(交集)
8.求和符号:∑
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)
10.下角标:₁ ₂ ₃ ₄
(如:A₁B₂C₃D₄ 效果如何?)
11.或与非的"非":¬
12.导数符号(备注符号):′ 〃
13.度:° ℃
14.任意:∀
15.推出号:⇒
16.等价号:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.导数:∫ ∬
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.绝对值:|
21.弧:⌒
22.圆:⊙ 11.或与非的"非":¬
12.导数符号(备注符号):′ 〃
13.度:° ℃
14.任意:∀
15.推出号:⇒
16.等价号:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.导数:∫ ∬
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.绝对值:|
21.弧:⌒
22.圆:⊙
α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω
Α Β Γ Δ Ε Ζ Η Θ Ι Κ ∧ Μ Ν Ξ Ο ∏ Ρ ∑ Τ Υ Φ Χ Ψ Ω
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ ъ
ы ь э ю я
А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ
Ы Ь Э Ю Я
Δ
⑧ 初三数学,第13题。我知道是算出平行四边形aefd的面积,但是df怎么求
答:
① 过点D作AE的平行线,与BC延长线交于点F。
平行四边形ABCD 与 平行四边形AEFD等底等高,所以面积相同,求得平行四边形AEFD面积即所求。
② 在三角形BFD中,BD=12,DF=AE=9,BF=BC + 1/2 BC = 3/2 BC = 3/2 AD = 15
BD:DF:BF = 12:9:15 = 4:3:5
所以 三角形BFD是直角三角形,BD 垂直 DF
求D点到BF的距离 H:
1/2 * 15 * H = 1/2 BD * DF = 1/2 12 * 9 (直角三角形BDF面积相等)
15H = 12 * 9
H = 36/5
求平行四边形ABCD面积:
S = AD * H = 10 * 36/5 = 72
(完)