‘壹’ 数学:中位数是什么
中位数(Median)统计学名词,是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。(注意:和众数不同,中位数不一定在这组数据中。) 作用 中位数的作用与算术平均数相近,也是作为所研究数据的代表值。在一个等差数列或一个正态分布数列中,中位数就等于算术平均数。 在数列中出现了极端变量值的情况下,用中位数作为代表值要比用算术平均数更好,因为中位数不受极端变量值的影响;如果研究目的就是为了反映中间水平,当然也应该用中位数。在统计数据的处理和分析时,可结合使用中位数。意义 1、意义:反映了一组数的一般情况。从中位数的定义可知,所研究的数据中有一半小于中位数,一半大于中位数。 2、中位数的优缺点:中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,有时用它代表全体数据的一般水平更合适。 3、在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。 4、中位数也可表述为第50百分位数,二者等价。 5、直观印象描述:一半比“我”小,一半比“我”大。
‘贰’ 什么是中位数,众数,平均数
众数和中位数平均数就是众数和中位数的和再除以2。
中位数(Median)统计学名词,是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,用Me表示。当变量值的项数N为奇数时,处于中间位置的变量值即为中位数;当N为偶数时,中位数则为处于中间位置的2个变量值的平均数。
‘叁’ 数学中中位数是什么意思
中位数:中位数,又称中点数,中值。中数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比他大,有一半的数据比他小。如果一组数是奇数个,最中间的数就是中位数。如果一组数是偶数个,最中间的两位数的平均值就是中位数。
‘肆’ 数学,中位数是什么、
中位数是指分配数列中各单位的标志值按大小顺序排列,位于中间位置的标志值。也就是说,中位数是位于标志值数列中心位置的那个标志值。在中位数的上下各有50%的单位数, 可见中位数以处于中心位置的标志值代表现象的一般水平,所以它是一种位置平均数。
中位数的计算,按未分组和已分组数列两种不同情况而有不同的计算方法。
(一)未分组数列的中位数计算方法
首先要确定中位数在数列中的位置数。不论数列是奇数数列或偶数数列均以确定中位数的位置数。 再以中位数位置数的标志值作为中位数。
例:若有一组数列:21、23、45、46、67、72、83。该数列为奇数,其中位数的位置数为:(位), 与第四位相应的标志值46,则为中位数。
另有一组数列:23、24、25、25、26、27、27、28、29、55。该数列为偶数,其中位数的位置数为:(位),即在第五位和第六位的中间,故其相应的标志值为第五位和第六位标志值的平均数, 即26与27的平均数: ,就是该数列的中位数。
(二)已分组数列中位数的计算方法
分组数列有单项式分组和组距分组,因此其计算方法:
①单项式分组数列的计算方法。
首先用公式确定中位数的位置数,并以之确定中位数所在组,该组的标志值即为中位数。例如:某班学生按年龄分组如表5-9。
表5-9 某班学生按年龄分组
按年龄分组
人数(人)
累计次数
17
18
19
20
21
8
19
21
7
3
8
27
48
55
58
合 计
58
--
先计算出中位数位置数(位), 再确定中位数所在组,中位数的位置数为29.5位。从累计次数上看,应在19岁组,故19岁为中位数。但有人认为,单项式分组计算出来的中位数,不符合中位数的定义,其理由是中位数两边的单位不相等。如本例,中位数19岁以下的单位数为27,中位数以上的单位数为10。
②组距数列的计算方法。
例,某班男生体重资料如表5-10。
表5-10 某班男生体重资料
按体重
(千克)分组
人数
(人)
向上累计
向下累计
49~51
51~53
53~55
55~57
57~59
59~61
61~63
4
20
25
38
21
12
6
4
24
49
87
108
120
126
126
122
102
77
39
18
6
先计算中位数位置数:(位)。从向上累计或向下累计,都可以确定中位数所在组为:55~57组,然后按下限公式或上限公式具体计算中位数。
下限公式:
上限公式:
式中符号:--中位数;
--中位数下限;
--中位数上限;
--中位数的次数;
--中位数组以下累计次数;
--中位数组以上累计次数;
--为总次数;
--- 中位数组的组距。
按下限公式计算:
按上限公式计算:
‘伍’ 数学中中位数是什么意思
中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
(5)中位数在数学里简写成什么扩展阅读:
例:
找出这组数据:23、29、20、32、23、21、33、25 的中位数。
解:
首先将该组数据进行排列(这里按从小到大的顺序),得到:
20、21、23、23、25、29、32、33
因为该组数据一共由8个数据组成,即n为偶数,故按中位数的计算方法,得到中位数
,即第四个数和第五个数的平均数。
‘陆’ 数学中位数是什么意思
一组按大小顺序排列起来的数据中处于中间位置的数.
当有奇数个(如17个)数据时,中位数就是中间那个数(第9个);
当有偶数个(如18个)数据时,中位数就是中间那两个数的平均数(第九个和第十个相加除以二).
‘柒’ 数学统计中中位数是什么
中位数是指分配数列中各单位的标志值按大小顺序排列,位于中间位置的标志值。也就是说,中位数是位于标志值数列中心位置的那个标志值。在中位数的上下各有50%的单位数,
可见中位数以处于中心位置的标志值代表现象的一般水平,所以它是一种位置平均数。
中位数的计算,按未分组和已分组数列两种不同情况而有不同的计算方法。
(一)未分组数列的中位数计算方法
首先要确定中位数在数列中的位置数。不论数列是奇数数列或偶数数列均以确定中位数的位置数。
再以中位数位置数的标志值作为中位数。
例:若有一组数列:21、23、45、46、67、72、83。该数列为奇数,其中位数的位置数为:(位),
与第四位相应的标志值46,则为中位数。
另有一组数列:23、24、25、25、26、27、27、28、29、55。该数列为偶数,其中位数的位置数为:(位),即在第五位和第六位的中间,故其相应的标志值为第五位和第六位标志值的平均数,
即26与27的平均数:
,就是该数列的中位数。
(二)已分组数列中位数的计算方法
分组数列有单项式分组和组距分组,因此其计算方法:
①单项式分组数列的计算方法。
首先用公式确定中位数的位置数,并以之确定中位数所在组,该组的标志值即为中位数。例如:某班学生按年龄分组如表5-9。
表5-9
某班学生按年龄分组
按年龄分组
人数(人)
累计次数
17
18
19
20
21
8
19
21
7
3
8
27
48
55
58
合
计
58
--
先计算出中位数位置数(位),
再确定中位数所在组,中位数的位置数为29.5位。从累计次数上看,应在19岁组,故19岁为中位数。但有人认为,单项式分组计算出来的中位数,不符合中位数的定义,其理由是中位数两边的单位不相等。如本例,中位数19岁以下的单位数为27,中位数以上的单位数为10。
②组距数列的计算方法。
例,某班男生体重资料如表5-10。
表5-10
某班男生体重资料
按体重
(千克)分组
人数
(人)
向上累计
向下累计
49~51
51~53
53~55
55~57
57~59
59~61
61~63
4
20
25
38
21
12
6
4
24
49
87
108
120
126
126
122
102
77
39
18
6
先计算中位数位置数:(位)。从向上累计或向下累计,都可以确定中位数所在组为:55~57组,然后按下限公式或上限公式具体计算中位数。
下限公式:
上限公式:
式中符号:--中位数;
--中位数下限;
--中位数上限;
--中位数的次数;
--中位数组以下累计次数;
--中位数组以上累计次数;
--为总次数;
---
中位数组的组距。
按下限公式计算:
按上限公式计算:
‘捌’ 数学里的中位数是什么意思
一般统计学中的中位数就是那些数字安从小到大的顺序排列,中间的那个数,这个数的前面数字的个数与后面数字的个数相等。
‘玖’ 数学中的中位数是什么意思
就是一组数据中依次排列后最中间的数为中位数 ,若数据个数为偶数,中位数就是中间两个数的平均数(也要排序)
‘拾’ 中位数,众数,平均数的概念分别是什么
众数----一组数据中出现次数最多的那个数据,叫做这组数据的众数(mode).
众数着眼于对各数据出现的次数的考察,
是一组数据中的原数据,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;
注意:一组数据中的众数有时不只一个,如数据2、3、-1、2、l、3中,2和3都出现了2次,它们都是这组数据的众数.
中位数----把n个数据按大小顺序排列,处于最中间位置的一个数据(或)叫做这组数据的中位数(median).中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。因此某些数据的变动对它的中位数影响不大。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势
注意:(1)求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以.
(2)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.
在同一组数据中,众数、中位数和平均数也各有其特性:
(1)中位数与平均数是唯一存在的,而众数是不唯一的;
(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。