A. 有哪些建立控制系统数学模型的方法
建立控制系统微分方程的主要步骤有:
(1)明确要解决问题的目的和要求,确定系统的输入变量和输出变量.
(2)全面深入细致地分析系统的工作原理、系统内部各变量间的关系.在多数情况下,所研究的系统比较复杂,涉及到的因素很多,不可能把所有复杂的因素都考虑到.因此,必须抓住能代表系统运动规律的主要特征,舍去一些次要因素,对问题进行适当的简化,必要时还必须进行一些合理的假设.
(3)如果把整个控制系统作为一个整体,组成控制系统的各元器件及装置则可以成为子系统。从输入端开始,依照各子系统所遵循的物理定律或其他规律,写出子系统的数学表达式.
(4)消去中间变量,最后得到描述输入变量与输出变量关系的微分方程式。
(5)写出微分方程的规范形式,即所有与输出变量有关的项应在方程左边,所有与输入变量有关的项应在方程右边,所有变量均按降阶排列。
系统微分方程的一般形式是
(2.1)式中:y为输出变量;
x为输入变量;和为方程的系数。
本书只讨论线性定常系统,因此,这些系数均为常数。
由于控制系统的被控对象和控制元件都具有惯性,当输入量发生变化时,输出量不可能在瞬时完成对输入量的响应,而必须经历一个过渡过程即动态过程,所以我们把描述控制系统的微分方程又称为动态方程。
B. 什么是控制系统的数学模型
数学模型是指控制系统设计依据的理论的计算原理、方法、工式等。比如很多闭环调节控制的数学模型是PID算法。
C. 线性控制系统的数学模型有哪些表示形式哪些属于输入输出描述,哪些属于内部描
描述控制系统输入、输出变量以及内部各变量之间关系的数学表达式,称为系统的数学模型。常用的数学模型有微分方程、差分方程、传递函数、脉冲传递函数和状态空间表达式等。系统数学模型的建立,一般采用解析法或实验法。解析法是依据系统各变量之间所遵循的基本定律,列写出变量间的数学表达式,从而建立系统的数学模型。
D. 古典控制理论中控制系统的数学模型有哪几种形式
微分方程,传递函数,结构图,信号流图
E. 习题 2-1 什么是系统的数学模型常用的数学模型有哪些
—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术. 模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等. 模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意. 模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。 应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式
F. 自动控制系统的数学模型有哪些表示方法
微分方程、传递函数、频率响应,要是4种的话就把框图算1个。
现代控制用状态方程
G. 控制系统的时域数学模型是什么
在自动控制理论中 ,时域中常用的数学模型有 微分方程,差分方程,状态方程。
而复数域中有传递函数,结构图。
频域中有频率特性。
H. 自动控制系统中数学模型的作用及常见形式有哪些
控制系统的数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。在静态条件下(即变量各阶导数为零),描述变量之间关系的代数方程叫静态数学模型;而描述变量各阶导数之间关系的微分方程叫数学模型。如果已知输入量及变量的初始条件,对微分方程求解就可以得到系统输出量的表达式,并由此可对系统进行性能分析。因此,建立控制系统的数学模型是分析和设计控制系统的首要工作
建立控制系统数学模型的方法有分析法和实验法两种。分析法是对系统各部分的运动机理进行分析,根据它们所依据的物理规律或化学规律分别列写相应的运动方程。例如,电学中有基尔霍夫定律,力学中有牛顿定律,热力学中有热力学定律等。实验法是人为地给系统施加某种测试信号,记录其输出响应,并用适当的数学模型去逼近,这种方法称为系统辨识。
I. 何谓自动控制系统的数学模型建立数学模型的目的何在
自控系统的数学模型主要包括被控对象的数学模型与校正装置的数学模型。设计自控系统的目的在于令系统在某种控制量输入时获得需要的被控量输出,比如对一个直流电机调速系统而言,输入的控制量是电枢电压,而输出的被控量是电机转速(或转矩),我们设计系统的目的就是当输入特定的电压时可以得到需要的转速。那么到底多高的电压(输入量)对应多高的转速(输出量)呢?使用如微分方程等数学语言描述输出对应输入的关系就叫建立数学模型。而数学模型的作用在于:1.描述被控对象自身特性;2.根据被控对象的特性定量的设计校正环节;3.用于分析整个系统的性能指标,作为系统是否达标的判断标准。