导航:首页 > 数字科学 > 数学三角形有怎么回事

数学三角形有怎么回事

发布时间:2022-06-19 17:57:51

‘壹’ 初二的数学三角形的判定怎么判定啊

1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到

4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA角角角和SSA边边角,这两种情况都不能唯一确定三角形的形状。
A是英文角的缩写(angle),S是英文边的缩写(side)。
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

‘贰’ 数学证明三角形没有思路怎么办

三角形是初中几何中的重要图形之一,掌握好三角形的证明不仅是学好八年级数学的关键,也是为今后学习平行四边形和圆奠定基础。要学好这章,这5个题型应作为重点。

全等三角形的判定和性质是常考题型之一,在具体问题中, 判定三角形全等一般只直接给出一个或两个条件(有的甚至一个条件也不直接给出), 其余条件常隐含于条件或图形中, 而找出这些隐含条件是解答问题的关键。分析 (1)根据已知条件, 利用HL可证Rt△ABC≌Rt△DCB;(2)利用Rt△ABC≌Rt△DCB可知对应角相等, 即可证明△OBC是等腰三角形。

等腰(边)三角形是特殊的三角形, 具有较多的特殊性质,关于它的判定和证明是常考题型之二。分析:图中有5个等腰三角形, 分别是△ABC, △AEF, △BEO, △OFC, △OBC;根据等腰三角形的性质, 即可得出EF与BE, CF之间的关系。

与勾股定理及逆定理有关的证明与计算是常考题型之四,勾股定理反映了直角三角形三边之间的数量关系, 是直角三角形的重要性质之一;而勾股定理的逆定理是通过计算判断一个三角形是不是直角三角形。过点C作CD⊥AB于点D. 在Rt△ABC中, 由直角边AC及BC的长, 利用勾股定理易求出斜边AB的长, 然后借助等积法求出CD的长, 即点C到AB的距离。
线段垂直平分线的性质及应用是常考题型之四,解决与线段垂直平分线有关的问题, 关键是要把握它的性质及与它有关的基本作图的步骤、技巧, 借助“线段垂直平分线上的点到这条线段两个端点的距离相等”, 实现相关线段的转移。
角平分线的性质与判定的运用是常考题型之五,在解答有关角平分线的问题时, 常在角平分线上选一点, 并向角的两边作垂线段, 以便利用角平分线的性质来解答. 角平分线的性质和三角形全等的性质都是证明线段相等或角相等的依据, 在解时常综合使用。
这5个题型代表了三角形的考试方式,所以希望同学们认真领会这几道例题的解题思路,举一反三,进一步总结和完善,真正提高自己分析问题和解决问题的能力。

‘叁’ 小学数学三角形性质

1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

2、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

3、从三角形的一个顶点到它的对边做一条垂线,顶点到垂足之间的线段叫做三角形的高,这条边叫做三角形的底。三角形只有3条高。

4、三角形具有稳定性。

5、三角形任意两边之和大于第三边。

6、三个角都是锐角的三角形叫做锐角三角形。

7、有一个角是直角的三角形叫做直角三角形。(其他两个角必定是锐角)

8、有一个角是钝角的三角形叫做钝角三角形。(其他两个角必定是锐角)

9、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。

10、两条边相等的三角形叫做等腰三角形。

11、小学四年级数学四则运算及三角形知识点:三条边都相等的三角形叫等边三角形,也叫正三角形。

12、等边三角形是特殊的等腰三角形

13、三角形的内角和是180°。

14、用2个相同的三角形可以拼成一个平行四边形。

15、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

16、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

17、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。 三角形只有3条高。 重点:三角形高的画法。

18、三角形的特性:物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。

19、边的特性:任意两边之和大于第三边。

20、三角形的分类:

按照角大小来分:锐角三角形,直角三角形,钝角三角形。

按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形

21、两条边相等的三角形叫做等腰三角形。(等腰三角形的特点:两腰相等,两个底角相等)

22、三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60°)

23、等边三角形是特殊的等腰三角形

‘肆’ 数学三角形概念

三角形只有五种心
重心:三中线的交点;
三角形重心是三角形三边中线的交点。当几何体为匀质物体时,重心与形心重合。
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。

三角形中心

当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
三角形只有五种心
重心:三条中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2(也称中心);
垂心:三角形三条高的交点;
内心:三条角平分线的交点,是三角形的内切圆的圆心的简称; 到三边距离相等
外心:三中垂线的交点,是三角形的外接圆的圆心的简称;到三顶点距离相等
旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.
当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心. 。

三角形的三条高线的交点叫做三角形的垂心。

锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
垂心是从三角形的各个顶点向其对边所作的三条垂线的交点。
三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。
性质:
设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、

C的对边分别为a、b、c,p=(a+b+c)/2.
1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.
2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;
3、 垂心H关于三边的对称点,均在△ABC的外接圆上。
4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。
7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
8、 设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
9、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
10、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短(施瓦尔兹三角形,最早在古希腊时期由海伦发现)。
11、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
12、 设锐角△ABC内有一点P,那么P是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
13、设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。
14、三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
15、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。(垂心伴随外接圆,必有平行四边形)
推论(垂心余弦定理):锐角三角形ABC的垂心为H,则AH/cosA=BH/cosB=CH/cosC=2R(可引入有向距,推广到任意三角形)
16、等边三角形的垂心把三角形的高分成2:1两段,靠近顶点的那段长度为高的三分之二。

外心指三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。
指三角形外接圆的圆心,一般叫三角形的外心。

O为外接圆圆心,OA=OB=OC
三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。
外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

内心是三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(通过全等易证明)。


内心定理:三角形的三个内角的角平分线交于一点,该点叫做三角形的内心。内心到三边的距离相等。
性质:
设△ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2。
1、三角形的三个角平分线交于一点,该点即为三角形的内心。
2、三角形的内心到三边的距离相等,都等于内切圆半径r。
3、r=S/p。
证明:S△ABC=S△OAB+S△OAC+S△OBC=(cr+br+ar)/2=rp, 即得结论。
4、△ABC中,∠C=90°,r=(a+b-c)/2。
5、∠BOC=90°+∠A/2。
6、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:
a(向量OA)+b(向量OB)+c(向量OC)=向量0。
7、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:
向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。
8、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是:
(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c)),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c))。
9、(欧拉定理)△ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr。
10、内角平分线分三边长度关系:如图:△ABC中,AD是∠A的角平分线,D在BC上,a、b、c分别是∠A、∠B、∠C的对边,d=AD。设R1是△ABD的外接圆半径,R2是△ACD的外接圆半径,则有:BD/CD=AB/AC

证明:由正弦定理得
b/sinB=c/sinC,d=2R1sinB=2R2sinC,
∴R1/R2=sinC/sinB=c/b.
又BD=2R1sinBAD, CD=2R2sinCAD,∠CAD=∠BAD,
∴BD/CD=R1/R2=c/b=AB/AC

‘伍’ 数学三角形的定义和性质

有两边相等的三角形是等腰三角形
二、性质
1.等腰三角形的两个底角相等。
(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)
7等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
2.等边三角形:满足其中任意一条即满足另一条,即为正三角形(又名等边三角形):
1.三边长度相等
2.三角度数为60度
等边三角形的性质
1)三角形的内角都相等,且为60度
2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在直线

直角三角形:有一个角为90°的三角形,叫做直角三角形。
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边的平方和等于斜边的平方。(勾股定理
性质2:在直角三角形中,两个锐角互余。
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:在直角三角形中,30°角所对直角边等于斜边的一半。
三角形:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
平面上三条直线或球面上三条弧线所围成的图形。
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
性质:三角形的内角和为180度;
三角形的一个外角等于另外两个内角的和;
三角形的一个外角大于其他两内角的任一个角。

‘陆’ 数学三角形的所有定理!所有!

等腰三角形:
定义:有两条边相等的三角形是等腰三角形。在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
性质:1.等腰三角形的两条腰相等;2.等腰三角形的两个底角相等;3.等腰三角形是轴对称图形;4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。
判定:1.有两条边相等的三角形是等腰三角形;2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴;2.等边三角形的三个角都相等,每个角都是60°。
判定:1.三条边都相等的三角形是等边三角形;2.有一个角是60°的等腰三角形是等边三角形;3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。
性质:1.直角三角形的两个余角互余;2.直角三角形斜边上的中线等于斜边的一半;3.直角三角形中30°角所对的直角边等于斜边的一半;4.勾股定理。
判定:1。有一个角是直角的三角形是直角三角形;2.有两个角互余的三角形是直角三角形;3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;4.如果三角形的三边长a、b、c满足于a^2+b^2=c^2,那么这个三角形是直角三角形。

15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯

形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,
那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,
所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两
边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意
锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条
平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,
所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等
圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 有的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条
割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个

全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r) 三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
积化和差
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
和差化积
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-
B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin
(A+B)/sinAsinB
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)

‘柒’ 数学符号“△”含义

读-----得 而 塔

代表在一元二次方程:
a*x的平方+bx+c中
b的平方-4*a*c的结果.
通常是用来判别这个方程有几个根的.
当△>0,说明此方程有2个不同的根.
当△=0,说明此方程有2个相同的根.
当△<0,说明此方程没有根,即此方程无解

‘捌’ 初中数学中,关于三角形所有定理及概念

1、三角形中的有关公理、定理:

(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和②三角形的一个外角大于任何一个与它不相邻的内角③三角形的外角和等于360°

(2)三角形内角和定理:三角形的内角和等于180°

(3)三角形的任何两边的和大于第三边

(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半

2、等腰三角形中的有关公理、定理:

(1)等腰三角形的两个底角相等.(简写成“等边对等角”)

(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)

(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”

(4)等边三角形的各个内角都相等,并且每一个内角都等于60°

(5)三边都相等的三角形叫做等边三角形;有一个角等于600的等腰三角形是等边三角形;

三个角都相等的三角形是等边三角形

3、直角三角形的有关公理、定理:

(1)直角三角形的两个锐角互余

(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方

(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形

(4)直角三角形斜边上的中线等于斜边的一半

(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

4、相似三角形的判定:

(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似

(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似

(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似

5、全等三角形的判定:

(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.)

(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(S.A.S.)

(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.)

(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)

(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(H.L.)

‘玖’ 数学三角形性质有哪些

1)重心分中线成两段,它们的长度比为2:1.
2)三条中线将三角形分成六个小块,六个小块面积相等,也就是说重心和三顶点的连线,将三角形的面积三等分.[证明:
用等底等高的三角形面积相等.高2倍底一倍的三角形面积等于高一倍底2倍的三角形面积]
2)材质均匀的三角形物体,他的重心就在几何重心上.也就是说,你可以从重心穿过一条线,手提这条线,而三角形物体保持水平.
三角形的五心

定理
重心定理:三角形的三条中线交于一点,这点到顶点的
离是它到对边中点距离的2倍。该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
三角形的重心、外心、垂心、内心、旁心称为三角形的五心。它们都是三角形的重要相关点。
上述的几个结论早在欧几里得时代均已被人发现,欧几里得除垂心定理外,均把它们作为重要定理收集在自己的《几何原本》里,但后来关于三角形这些特殊相关点的诸多研究及由此得出的许多着名结论表明,遗漏垂心定理不能不算是《几何原本》作者的一个疏忽。这些性质都是可以直接用的啊

‘拾’ 数学三角形的定义是什么

由不在同一直线上的三条线段首尾顺次连结所组成的封闭图形叫做三角形。

三角形分类

(1)按角度分

a.锐角三角形:三个角都小于90度

b.直角三角形:有一个角是90度的三角形,夹90度的两边称为“直角边”,另一条称为“斜边”。

c.钝角三角形:有一个角为钝角的三角形

(2)按边长分

a.等腰三角形:两条边相等,这两条相等的边称为“腰”,另一边叫做“底边”,腰对应的角也是相等的。等边所夹角为直角时,称为等腰直角三叫形,简称RT三角形,是直角三角形的特殊情况。其实等边三角形(三条边都相等,且三个内角均为60度的三角形)是等腰三角形的特殊情况
b.不等边三角形:顾名思义,三条边均不相等的三角形。

三角形的性质

1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。

2.内角和等于180度

3.等腰三角形是三线合一的,即等腰三角形的顶角平分线,底边的中线,底边的高。

4.直角三角形的两条直角边的平方和等于斜边的平方和--勾股定理。斜边的中线等于斜边的一半。
5.三角形共有四心:内心(三条角平分线的交点)、外心(三条中垂线的交点)、重心(三条中线的交点)以及垂心(三条高所在直线的交点)旁心,三角形任意两角的外角平分线和第三个角的内角平分线的交点.
6.三角形的外角(三角形内角的一边与其另一边所组成的角)等于与其不相邻的内角之和。

全等三角形:两个完全相同的三角形,可用符号“≌”(表示两图形全等)表示。

相似三角形:两个三角形三个内角相等,边长不一定相等

三角形为什么具有稳定性

任取三角形两条边,则两条边的非公共端点被第三条边连接

∵第三条边不可伸缩或弯折

∴两端点距离固定

∴这两条边的夹角固定

∵这两条边是任取的

∴三角形三个角都固定,进而将三角形固定

∴三角形有稳定性

任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接

∴两端点距离不固定

∴这两边夹角不固定

∴n边形(n≥4)每个角都不固定,所以n边形(n≥4)没有稳定性

阅读全文

与数学三角形有怎么回事相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071