导航:首页 > 数字科学 > 如何学好数学符号

如何学好数学符号

发布时间:2022-06-19 22:58:49

⑴ 如何学好高中数学学习方法有哪些

怎样学好高中数学?首先要摘要答题技巧

现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高中数学试卷

怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

⑵ 如何加强小学生数学符号感的培养

数学符号是数学的语言,是人们进行表示、计算、推理和解决问题的工具。学习数学的目标之一是使学生懂得符号的意义,会用符号解决实际问题和数学本身的问题,发展学生的符号感。数学课程标准对小学生的数学符号感提出以下要求:“能从具体情况中抽象出数量关系和变化规律,并用符号表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序解决用符号所表示的问题。”如何按新课程标准的要求在教学中培养学生的符号感呢?笔者以为:学生符号感的建立不是一蹴而就的,是在学习过程中逐步体验和建立起来的。教学中应当尽可能地强化学生的符号意识,在实际情境中帮助学生理解符号以及表达式,关系式的意义,在解决问题中培养学生的符号感,在开放拓展中发展学生的符号感。
一、联系生活,渗透符号意识:
在现实生活中,商店的招牌,医院的红“十”字标记,公路上的各种交通标志……,这样的符号处处可见。语言学家皮埃尔·吉罗说:“我们是生活在符号之间”。在这个“符号化”的世界中,学生获得的生活经验已让他们初步感受到符号存在的现实意义。比如,当他们看到店门前精致的“M”时,立刻就可想到麦当劳。可以说在日常生活中,学生已经初步具有了符号意识,感受到生活中符号所体现出的简约、严谨、科学的特质,这种符号意识的形成,对数学符号感的形成起到了良好的促进作用。
符号意识的形成,是培养学生符号感的基础。在数学教学中,教师要能有意识地利用学生的生活经验,引导学生感受到符号引入的必要,鼓励学生用自己独特的方式表示具体情景中的数量关系和变化规律,逐步走进符号化的数学世界,这是发展学生符号感的决定因素。在认识“0~9”时,学生对于日常意义上的“数数”、“识数”、“写数”已具有了一定的水平,但是这不代表学生真正理解掌握了数字符号“0~9”,在教学中,我们就可以把数的学习放入到生活场景中去,让学生从具体事物或事件出发,丰富学生有关“数字”符号的背景知识,让学生经历从感性到理性、具体到抽象并最终形成形式化的抽象数字符号。又如在教学:教师有12个红五角星,奖励给同学们一些后,还剩5个,奖励给同学们几个?可以列式12-□=5,在这个数学问题的解决中,就渗透了用字母表示数的思想。
二、操作实践,感受符号化:
每一个符号的形成,都是对一类事物的共同特征的抽象概括,是反映事物共同属性的思维形式。数学符号的高度抽象性,往往会使学生因其抽象、难懂而产生畏难心理,影响学习效果。因此,在实际教学中,数学符号的学习不能变成单纯的抽象符号的学习,要尽可能的让学生在教师指导下做数学,通过观察、实践、分析、归纳,获得体验,感受符号化,
如教学几何图形这一类图式符号时,我们可以通过引导学生观察实物,让学生通过摸、印模、描绘等操作,从中抽象出几何图形,并让学生充分感知几何图形与实物的区别,通过多种形式变换,让学生掌握其本质特征。在教学角的认识时,就可采用如下操作流程:
1、摸(自主实践感知):分组进行搭积木游戏,摸一摸所用材料。
2、说(引入角的概念):说游戏过程,特别是摸材料的感觉和发现。
3、做(初步抽象图形):各自想办法把感受到的角呈现出来。
4、符号化:(1)认识角的各部分名称;(2)角的图形与实物对比,理解掌握角的特征。
这样的操作实践,让学生体验到了符号化,亲历了符号化的过程,提升了学习效率。
三、创设情境,增强符号感:
数学符号的功能是用符号的形式代表符号所表达的丰富内容。虽然数学符号是抽象的,但它充满生机,有其数学思想,不是枯燥的。因此,向学生提供丰富的学习素材,使学习活动尽可能的处于情境之中,是增强学生数学符号感的有效途径之一。如在教学“认识乘法”这一内容时,由于学生才第一次接触到这一新的运算符号和形式,所以教师必须要精心创设数学情景,让学生在思考探索的过程中,抽象出乘法数量关系和变化情况,在此基础上再逐步引入乘法符号,让学生学会用符号来表示数量关系。教学中可以这样做:
1、创设情境(出示课件):
场景(A)森林运动会:兔2只一组有3组,鸡3只一组有4组,猴5只一组有5组。师:你能知道兔、鸡、猴各有多少只吗?(让学生在计算过程中发现,几个相同加数相加,可以说成几个几)
场景(B)学雷锋活动:一(1)班学生参加学雷锋活动,4位同学一个小组,共有9组。师:你能知道有多少位同学吗?(让学生发现如果用加法列式就太麻烦了,而如果用“几个几”来说就很简便)
2、组织交流:有多个相同加数的连加算式,你能不能想出一种简单的方法来表示呢?
3、引入符号:在前面教学的基础上,教师揭示出这一类型算式的数量关系就是“几个几”。进而引入“×”号,让学生明确“几个几”可以写成“几乘几”,再组织学生进一步认识乘法各部分名称。
4、深化认知:继续用课件出示情境,要求学生列出两种算式,进一步感知乘法算式的简洁、精确、规范,体验到数学符号特有的美。
这样,学生在已有加法知识的基础上,通过在具体情境中的探索研究,认识了乘法,产生了积极喜悦的情绪,为以后的学习奠定了坚实的基础。
四、解决问题,发展符号感:
数学符号有自己的思想内容,它按一定的规则组织起来,成为思维活动的载体,并能简洁地反映事物的内在本质。它准确、清晰,具有简约思维、提高效率、便于交流的功能。当学生全身心地投入到解决问题的过程中,寻找到了解决办法后,才能充分体验到符号化的魅力,获得持久的学习动力。
如在教学加法交换律时,就可以让学生在一步步的问题解决中,获得a+b=b+a的符号表达式:
1、提出问题,感知规律。
师:六(1)班有男生27人,女生24人,这个班一共有多少人?
生1:27+24=51(人);生2:24+27=51(人)
师:观察两个算式,你发现了什么。(板书:27+24=24+27)
教师引导学生讨论交流得出:加数位置换了,和不变。
2、深化问题,体验规律。
师:是不是所有的加法算式都具有同样的特性呢?你可以举例说明。(学生分组,按教师提出的要求进行小组交流学习)
师:(组织学生观察各组所写算式)这样的算式都具有我们前面发现的规律吗?(生思考回答)
师:像这样的算式,写得完吗?(生思考回答)
3、建构规律,发展符号感。
师:这一类写不完的算式,你能用一句话表达它们的规律吗?
师生互动交流得出定律:两个数相加,交换加数的位置,和不变。
师:这就是加法交换律,你还能用其他的方式表达出它的意义吗?(生讨论交流)
师:展示学生创造的表达式,组织评析。
师小结:数学上常用字母来表示数,字母符号的运用促进了数学的发展。一般地我们可以用a和b来表示两个加数。这样加法交换律就可以表达为:a+b=b+a。(师板书字母公式)
这样的问题解决与探索,引起了学生浓厚的学习兴趣,使学生建立了正确的符号感,同时学生也发现了用字母表示数能使数学问题变得简洁,体现了数学符号的简洁美。
随着数学学习内容的深入,符号感的培养必将被不断地赋予新的内容。教学中,只要我们给学生提供机会经历“具体情境→抽象化→符号表示→深化应用”这一系列逐步形式化,符号化的过程,学生的符号感就能真正得到培养和发展。

⑶ 如何培养学生的数学符号运算能力

根据一定的数学概念、法则和定理,由一些已知量得出确定结果的过程,称为运算,能使某些运算顺利完成的心理特征,称为运算能力。运算能力是数学的基本能力,中考对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算。对运算能力的要求可概括为“准确、熟练、合理”六个字,而且反映出重在对算理和算法的考查,并对计算和运算的灵活性与实用性也有一定的要求,应懂得恰当地应用妙算、图算、近似计算和精确计算进行解题。那么怎样培养学生的运算能力呢?
首先是对运算能力的认识。
1.运算能力的层次性�不同类别的运算是由简单到复杂、由具体到抽象、由低级到高级逐步形成和发展起来的,不掌握有理数的计算,就不可能掌握实数的计算;不掌握整式的计算,也就不可能掌握分式的计算。不掌握有限运算,就不可能掌握无限计算。没有具体运算的基础,抽象运算就难以实现。由此可见,运算能力是随着知识面的逐步加宽、内容的不断深化、抽象程序的不断提高而逐步发展的。�
2.运算能力的综合性�运算能力既不能离开具体的数学知识而孤立存在,也不能离开其他能力而独立发展,运算能力是和记忆能力、观察能力、理解能力、联想能力、表述能力等互相渗透的,它也和逻辑思维能力等数学能力相互支持着。因而提高运算能力的问题,是一个综合问题。�提高学生的运算能力,从下面几个方面入手:�
一、重视思想教育,养成有意注意习惯
初一学生在运算中普遍存在速度慢、准确性差。其出现的错误多与对概念、法则、公式的理解、掌握与运用相联系。例如-3(a-b)=-3a-3b;(a±b)2=a2 ±b2等错误。另外由于缺乏良好的学习习惯,计算时经常把数字、运算符号、性质符号抄错或漏落,以及缺乏运算的条理性、合理性、灵活性的思考,而造成人为差错。刚踏入初中的学生,心理正处于一个重要的转折期,他们一方面好奇心强,爱说爱动,争强好胜,学习的动力多来自兴趣激情,收获多来自“无意注意”。另一方面,他们自觉性差,自控能力弱,情绪起伏较大,动力和效果都不稳定。我在数学课堂教学中,通过介绍我国古今数学重大成就,结合我国社会主义现代化建设和改革的重大成就,可以激发学生强烈的爱国主义热情和民族自豪感,鼓励他们树立远大理想和明确正确的学习目的,能提高他们的思想素质和心理素质。浓厚的兴趣是学好数学的前提。主要应围绕教学目标,通过灵活多样的教学方法,去鼓励、启发、引导学生发现和总结规律,探讨应用,使学生尝到付出劳动,获得成功的乐趣,养成有意注意的习惯。提高思想认识,引导有意注意,是纠正学生粗枝大叶,培养认真细致的良好品质的基本途径。如在有理数的运算、整式加减、解一元一次方程教学时,针对学生解题中出现的错误情况,把学生在平时作业中出现的种种错误摘录出来,让学生去讨论、订正、体会,使学生在热烈讨论的气氛中受到感染,取得积极的效果
二、抓好起点教学,防患于未然
(l)负号的引入与符号法则是代数运算的一个重要起点。教学中除重视理解外,应特别注意其应用要点,帮助学生选择思维起点和设计思维程序。如学生在学习有理数运算时,应强调运算时“先定符号后计算,观察特点再起步”,即先确定每步运算或结果的符号,再对其绝对值进行计算;计算时先观察题目的特点,选择合适的方法,以求运算简便、快捷。有些学生开始不能针对题目特点,灵活运用乘法运算律来解题,而是按同级运算法则把题中的分数化为小数(或小数化为分数)再从左到右依次计算。在有理数的混合运算中,可先让学生通过观察确定其运算步骤,初学时可用数字标明某一步可同时进行计算,可以避免一些易发生的错误。
(2)做好单层次思维向多层次思维的转化.学生感知字母的主要障碍是容易受小学算术的定势影响。如比较5a和4a的大小,学生易受5>4的影响而忽略a可正、可负、可为零的本质属性,而错误的判断为5a>4a,忽视了5a=4a(当 a= 0时);或 5a< 4a(当 a< 0时=两种情况的存在。为此,教学中要着力突出a是什么有理数,使之认识由表及里,由具体向抽象发展。
三、加强基础知识和基本技能的教学�
运算能力与思维能力相结合,包括分析运算条件,探究运算方向,选择运算公式,确定运算程序等一系列过程。要求会对式子的组合变形与分解变形,对几何量的计算求解,以及对数字的计算、估算、简算和近似计算,会根据法则、公式进行正确运算、变形和数据处理。中学数学是培养学生的运算能力而非只机械计算能力,因此,考试对算理有一定的要求。教学中基础知识是算理的依据,对运算具有指导意义。运算出错,常听到学生自责“粗心大意”,当然不排除个别情况下因粗心造成错误,但解题经常“粗心大意”,就不仅仅是“粗心大意”了,基础知识混淆、模糊,基础知识不过硬,往往是引起运算错误的根本原因,所以加强和落实双基教学是提高运算能力的一个很现实的问题:�
1.正确理解概念,熟记某些重要数据公式、法则、定理准确无误是运算的基本要求,正确的记忆公式和法则是运算准确的前提。并能掌握公式的推导,只有理解某些概念与公式的推导,才能做到公式的正用、反用和活用,从而提高运算能力。�
2.抓好审题训练做题时养成认真审题、细心求解的习惯,要求学生看清题目中的每一个数据和运算符号,确定运算顺序,选择合理的运算方法。审题训练能培养学生最初定向能力,增进运算方向的正确性。要做一个运算问题,首先要做到审视性读题、多角度观察、综合性思考,以确定运算方向,过好审题关。�
3.优化运算过程和运算方法的训练优化运算方法,可以提高运算的合理性。我们要重视数学思想对运算的指导作用。数学思想是数学的基本观点,是数学中最本质、最高层次的东西,它是优化运算过程和运算方法的指导原则,是解决运算合理性的基本策略的源泉,是数学运算的灵魂。指导数学运算最常用的是化归思想,即把要解决的运算问题转化为已经具有确定解法和程序的规范的运算问题。�
4.加强运算练习,养成好习惯能力都是训练出来的,提高学生的运算也不例外,必须加强练习,进行严格训练。综合练习可以较好的把数学概念、定理、法则和公式等练习起来加以运用。要求学生养成规范书写的习惯,书写工整、格式正确、字迹端正、做到不潦草,不涂改,保持作业整齐美观。要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。�
5.提高验算能力计算中经常出错,是运算能力差的一种表现。纠正这种毛病只是要求学生细心还不够,还要提高其验算能力并养成良好的验算习惯。学生往往两三遍地查不出毛病,其原因往往是他们只知道重看一边或重演一遍,而不是运用学过的数学知识从不同角度进行演算。事实说明这种重演一遍的算法是没有多大意义的,而能从各个方面来迅速判断答案真假的学生,他们对问题的理解才会深刻,对学习才有意义。�
三、加强推理训练,注意解题策略,提高运算的简捷性�
教学中要在学生掌握基础知识的基础上加强推理训练,平时练习就要求做到步步有根据、有充足的理由,并注意运算的顺序性。解题时往往解决问题的途径很多,这就要求我们善于选优而从。有的学生缺乏比较意识,做题时往往找到一种方法就抱着死做下去,即使繁冗,也不在乎,认为做对就行了。引导学生灵活运用条件,提高运算的简捷性,如灵活运用概念、公式,灵活选择运算途径等。数形结合,化难为易。解答数学问题,若用纯代数或纯几何方法去解答,有时造成过程复杂,对运算能力较差的学生,更容易出差错,若综合一些其他知识,实施数形结合,则能起到化繁为简、化难为易之效果。�
总之,培养学生的运算能力重点是准确理解有关知识,熟练有关运算的方法、步骤。随着运算技能的形成,逐渐简化运算步骤,灵活运用法则、公式,合理选择简捷运算途径,在各种应用中,逐渐积累提高运算能力。

⑷ 如何培养学生数学符号意识

罗素说过:“什么是数学?数学就是符号加逻辑。”数学符号是具有简洁性和抽象性的规范语言,它准确、清晰,具有简约思维、提高效率、便于交流的功能。数学课程的一个任务,就是培养学生在数学学习过程中,对用符号表示数及其运算的理解和感受。可见,培养学生的符号感对于数学语言表达思想具有重要的意义,也是发展学生思维的需要。一、让学生感到引入符号的必要数学符号的引入,可简短地表示和反映数量关系与空间观念中最本质的属性,并推进数学的发展。因此,在教学中应当生动地展示这种情境,让学生感到引入符号的必要性,并从中体验到优越性,从而激发新奇感,强化认知动机。例如,教学“认识=、>、3、3

⑸ 数学特别难学吗要如何才能灵活的运用数学公式

公式的样式有很多,有简单运算符号组合的,也包括由简单数学公式组合起来的复杂公式。比如在化学反应方程式中,我们需要在公式的等号上面输入反应条件,作为新手,可能不知道如何在公式编辑器中进行操作,下面就一起来学习具体操作技巧。

比如要在MathType中打出如下图所示的公式:

阿基米德、开普勒、高斯、牛顿、麦克斯韦、爱因斯坦……他们用代表着人类的智慧,向宇宙提问、与宇宙对话,将关于宇宙的秘密翻译成我们能懂的语言,这种语言就是如上这些光耀后世的"数学公式"。

每一个伟大公式都是人类文明的集中体现,每一个伟大公式见证的,都是科学的美丽与人类的尊严,每一个伟大的公式背后,都有一段值得回味的故事。

⑹ 怎样才能学好高中数学

你是高一的?还是高二的?我是高三的大哥哥哦,如果你是高一的学弟那么你觉得高中的数学难那很正常,你的情况也在我的身上发生过,不过后来我的一名数学老师开导了我,我的数学老师就给我说如果想要学好数学一定量的习题是必须做的而且每天都应该做如果你觉得有时间,让后就是切记熬夜搞你觉得难的科目,你应该把难搞的科目放在你最有精神的时间段,而且告诉你学数学做大量的习题你知道是为了什么吗 ?是为了练解题的速度,你平时要做的就是把你会做的题做精,把你不会的题让老师给 你讲直到把你不会的题都问完。给你说这是需要一个过程的,所以坚持很重要,像我坚持了半学期原本我的数学只能考70多分的呵呵没想到高二期中考试数学竟然得了140分同学们都很惊讶,我自己也不敢相信了,这真是太神奇了!-还有一点就是,这点最最最最重要!!!切记当你觉得我完不成你要做的困难的事时千万别灰心,这是你的情绪是很消极的,你可以马上去干别的事情等放轻松了再来做。!祝你好运!

⑺ 如何培养小学生数学符号意识的论文

学生在生活中接触很多用符号来表示的情境,使学生积累了很多潜藏的“符号意识”,这是培养学生符号感的重要基础。数学符号的学习过程应遵循从感性→理性→运用的辩证过程。因此,教学中教师要关注学生已有的符号经验,将数学教学设计成看得见、摸得着的物质化实践活动,在解决问题中熟练符号的使用。
如四年级下册“解决问题的策略”单元,单看例题中的条件,大部分同学有点无从下手,借助画图,标出题目中的条件,一眼就看出增加的部分是个小长方形,增加的面积就是一个小长方形的面积,它的长与原长方形的宽相同、小长方形的宽就是原长方形的长增加的长度,利用长方形面积公式就很容易求出长方形的宽,进而求出最后问题。

⑻ 高中生怎样学好数学

一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9*9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。
三、自学能力的培养是深化学习的必经之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。

阅读全文

与如何学好数学符号相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071