导航:首页 > 数字科学 > 数学三角代表什么

数学三角代表什么

发布时间:2022-06-20 01:43:28

‘壹’ 数学符号△是表示什么

△是大写希腊字母Delta,在数学中常见用法的有:

1、三角形

2、二次函数根的判别式

3、表示变量的增量,如△x,△y

4、表示一个小量

5、表示差分

6、在Riemann定积分理论中表示一个区间的分割

(1)数学三角代表什么扩展阅读

Delta是第四个希腊字母的读音,其大写为Δ,小写为δ。在数学或者物理学中大写的Δ用来表示增量符号。 而小写δ通常在高等数学中用于表示变量或者符号。

delta符号在生活中应用颇广,多种品牌、机构均以它命名。【读音】 delta /de:lta/ Delta是衡量期货价格变动一个单位,是引起权利金变化的幅度。如看涨期权⊿为0.4,意味着期货价格每变动一元,期权的价格则变动0.4元。

‘贰’ 数学△是什么意思

△ triangle
数学符号:1.三角形
2.在一元二次方程的求解过程中表示b^2-4ac
3.希腊字母,通常表示变化量
4.化学反应式中符号,表示加热。
5.在物理学的热学中,物体在吸热或者放热时吸收或放出的热量的计算公式为Q=cm△t(c表示物质的比热容 m表示物质的质量 △t表示温度的变化,升温:t1-t0 降温t0-t1)
数学一元二次方程式中,以△=b²-4ac为判别式。
(1)当△>0时,方程有两个不相等的实数根;
(2)当△=0时,方程有两个相等的实数根;
(3)当△<0时,方程没有实数根.
(1)和(2)合起来:当△≥0时,方程有两实数根.

‘叁’ 三角在数学中是什么意思

三角学
trigonometry
[编辑本段]名称定义
研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。
[编辑本段]三角学的起源
三角学起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。
三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.
[编辑本段]三角学的历史
早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)着《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)着《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。
�雷格蒙塔努斯的主要着作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学着作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。
�雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其着作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响.
�三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.
�16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随着名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。
17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用.
�三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究.
�文艺复兴后期,法国数学家韦达(F Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专着之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。
1722年英国数学家棣莫弗(A De Meiver)得到以他的名字命名的三角学定理
�(cosθ±isinθ)n=cosnθ+isinnθ,
�并证明了n是正有理数时公式成立;1748年欧拉(L Euler)证明了n是任意实数时公式也成立,他还给出另一个着名公式
�eiθ=cosθ+isinθ,
�对三角学的发展起到了重要的推动作用.
近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.
[编辑本段]三角学的特点与运用
早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,着成《完全四边形》一书,才把三角学从天文学中分离出来.15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形.
16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本着作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.着名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了,为三角学增添了新的活力.
因此三角学是源于测量实践,其后经过了漫长时间的孕育,众多中外数学家的不断努力,才逐渐丰富,演变发展成为现在的三角学。
[编辑本段]三角函数的计算方法
三角学中的三角函数有6个,是用几何方法定义的。在直角坐标系中,设以射线Ox为始边,OP为终边的角为θ,P点的坐标为(x,y),|OP|=r,这时6个比由θ的大小确定,都是θ的函数,称它们为角θ的三角函数,分别记作并分别称为角θ的正弦、余弦、正切、余切、正割、余割。tg,ctg,csc也分别记作tan,cot,cosec。
同角三角函数间有3组运算关系,即
三角函数都是周期函数,以2π为周期。
三角函数的基本恒等式有和角公式:
sin(a+β)=sinαcosβ+cosαsinβ
cos(a+β)=cosαcosβ-sinαsinβ
由这两个公式可以导出差角公式、倍角公式、半角公式、和差化积与积化和差等公式。
解三角形是已知三角形的某些元素(边和角)时求其余未知元素。设三角形的三个角为A,B,C,它们所对的边分别为a,b,c,则有
正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)
余弦定理:a2=b2+c2-2bccosA这两个定理是解三角形的主要依据。
三角方程一般指含有某些三角函数的方程,并且三角函数的自变量中含有未知数。由于每个三角函数都是周期函数,所以任何一个三角方程只要有解,就有无穷多个解。
三角测量
三角测量是指在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。在西方,古希腊着名的数学家毕达哥拉斯首次证明了有关直角三角形的“毕达哥拉斯定理”,即中国的“勾股定理”,对几何学研究及其应用做出了巨大贡献.

‘肆’ 数学符号△是什么意思

数学符号△是根的判别式。

根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。

(4)数学三角代表什么扩展阅读:

数学符号△的应用:

1、解方程,判别一元二次方程根的情况,它有两种不同层次的类型:系数都为数字;系数中含有字母;系数中的字母人为地给出了一定的条件。

2、根据一元二次方程根的情况,确定方程中字母的取值范围或字母间关系。

3、应用判别式证明方程根的情况(有实根、无实根、有两不等实根、有两相等实根)。

4、解一元二次方程,判断根的情况。根据方程根的情况,确定待定系数的取值范围。

5、证明字母系数方程有实数根或无实数根。应用根的判别式判断三角形的形状。

参考资料来源:网络—△

‘伍’ △在数学题中是什么意思,怎么读

1 △表示三角形符号,读作三角形

2 △叫二次方程的判别式,读作“德尔塔|“

计算:△=b^2-4*a*c (a、b、c 分别为方程二次项、一次项和常数项系数) 作用:在一元二次方程中判定实根的存在性 举例:1、X^2+2x+3=0 △=2^2-4*1*3=-8<0 方程无实数根

2、X^2+2x+1=0 △=2^2-4*1*1=0 方程有两个相等的实数根 3、X^2+2x-1=0 △=2^2-4*1*(-1)=8>0 方程有两个不相等的实数根。

,0)。

3)当 Δ<0时,抛物线与x轴没有交点。

⑧ 利用根的判别式解有关抛物线(Δ>0)与x轴两交点间的距离的问题。

⑨当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

‘陆’ 数学三角形△叫什么

三角△叫Delta,在数学中常见用法的有:三角形;二次函数根的判别式;表示变量的增量,如△x,△y;表示一个小量;表示差分;在Riemann定积分理论中表示一个区间的分割。

Delta是第四个希腊字母的读音,其大写为Δ,小写为δ。在数学或者物理学中大写的Δ用来表示增量符号。 而小写δ通常在高等数学中用于表示变量或者符号。

delta符号在生活中应用颇广,多种品牌、机构均以它命名。是衡量期货价格变动一个单位,是引起权利金变化的幅度。如看涨期权⊿为0.4,意味着期货价格每变动一元,期权的价格则变动0.4元。

三角形△在化学程式:

如果三角形△在化学程式中的等号上方,那么表示的是加热的意思。还可以表示某种量之间的差值,一般读作“德尔塔”比如:△Tf表示溶液的凝固点降低;△Tb表示溶液的沸点升高。

加热是指热源将热能传给较冷物体而使其变热的过程,用化学符号△表示。一般的外在表现为温度的升高,可以用温度计等设备直接测量。

‘柒’ 数学里的三角形是什么意思啊

Delta,希腊字母,
其大写为Δ,小写为δ。
在数学或者物理中大写的Δ用来表示增量符号。
而小写通常在高等数学中用于表示变量或者符号。

‘捌’ 数学里面有个三角号是什么符号,表示什么

△,三角表示三角形,或是希腊字母,表示一元二次方程的判别式

‘玖’ 三角代表什么意思,物理学中。

△:数学上表示经常变化的量,是希腊字母,音译为“德尔塔”。△是在希腊字母中的一个大写字母,其小写形式为δ。

在物理学中,△常常作为变量的前缀使用,表示该变量的变化量,如:△t(时间变化量)、△T(温度变化量)、△X(位移变化量)、△v(速度变化量)等等。

一般来说△t=t1-t2等等,t1和t2在题中都能求得。

△t不一定表示非常小的量(其他物理量也是),它可以表示一段区域内的变化量。

(9)数学三角代表什么扩展阅读:

△v(速度变化量)与时间的比值为加速度。加速度是矢量,既有大小又有方向。(方向由+、-号代表)加速度的大小等于单位时间内速度的改变量;加速度的方向与速度变化量ΔV方向始终相同。

特别,在直线运动中,如果加速度的方向与速度相同,速度增加;加速度的方向与速度相反,速度减小。加速度等于对速度时间的一阶导数,等于位移对时间的二阶导数

1.当运动物体的速度方向与加速度(或合外力)方向之间的夹角小于90°时,速率将增大,速度的方向将改变;

2.当运动物体的速度方向与加速度(或合外力)方向之间的夹角大于90°而小于或等于180°时,速率将减小,方向将改变;

3.当运动物体的速度和方向与加速度(或合外力)方向之间的夹角等于90°时,速率将不变,方向改变。

‘拾’ 数学三角符号代表什么,怎么读

形似的有△和Δ两个
△读作三角形,就代表三角形
Δ读作delta,代表一元二次方程的根的判别式b^2-4ac,或是代表某个变化量

阅读全文

与数学三角代表什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071