导航:首页 > 数字科学 > 现代数学的最新成就是什么

现代数学的最新成就是什么

发布时间:2022-06-21 06:28:44

⑴ 现代数学的发展趋势有哪些

现代数学已经由以往的面貌脱胎换骨:极限理论让微积分变得完善,集合论让数学变得稳固等20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费尔玛大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的着名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特, 许多当代世界着名的数学家在过去几年中整理和提出新的数学难题, 希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日, 千年数学会议在着名的法兰西学院举行。 会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲, 其后,塔特(Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。 克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单:这七个“千年大奖问题”是: NP 完全问题, 郝治(Hodge) 猜想, 庞加莱(Poincare) 猜想, 黎曼(Rieman)假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程, BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程

⑵ 我国古代和现代数学家对数学学科发展的重大贡献

1.国际着名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人,华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等着名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专着与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。
3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。
4.着名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。
5.我国泛函分析领域研究先驱者,曾远荣
1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓着。
6.我国最早提倡应用数学与计算数学的学者,赵访熊
1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。
7.着名数学家,数学教育家,吴大任
1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,着、译数学教材及名着多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大网络全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。
8.着名数学家,北大教授,庄圻泰
1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。着有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom·plexVariable》(在美国出版)
9.着名数学家,数学教育家,四川大学校长,柯召
1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。
10.中央研究院院士,首批学部委员,许宝騄
1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。
11.中科院院士,原北大数学系主任,段学复
1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了着名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。
12.我国拓扑学的奠基人 江泽涵
毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。

⑶ 数学家的数学成果

中国古代算术的许多研究成果里面包含了一些后来西方数学的思想方法,近代也有一些数学研究成果是以华人数学家命名的。这里列举中国近现代数学家的一些重要的贡献。
李善兰在级数求和方面的研究成果,被命名为“李善兰恒等式” 。华罗庚关于完整三角和的研究成果被称为“华氏定理”;另外他与王元提出多重积分近似计算的方法被成为“华—王方法”。苏步青在仿射微分几何学方面的研究成果被命名为“苏氏锥面”。熊庆来关于整函数与无穷级的亚纯函数的研究成果被称为“熊氏无穷级”。陈省身关于示性类的研究成果被称为“陈示性类”。周炜良在代数几何学方面的研究成果被称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。吴文俊在拓扑学中的重要成就被命名为“吴氏公式”,其关于几何定理机器证明的方法被称为“吴氏方法”。王浩关于数理逻辑的一个命题被称为“王氏悖论”。柯召关于卡特兰问题的研究成果被称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”。陈景润在哥德巴赫猜想研究中提出的命题被称为“陈氏定理”。杨乐和张广厚在函数论方面的研究成果被称为“杨—张定理”。陆启铿关于常曲率流形的研究成果被称为“陆氏猜想”。夏道行在泛函积分和不变测度论方面的研究成果被称为“夏氏不等式”。姜伯驹关于尼尔森数计算的研究成果被称为“姜氏空间”;另外还有以他命名的“姜氏子群”。王戌堂关于点集拓扑学的研究成果被称为“王氏定理”。侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”。

⑷ 5位数学家的简介与主要成果

1、祖冲之

祖冲之,曾经算出月球绕地球一周为时27.21223日,与现代公认的27.21222日几乎没有误差。月球上许多火山口中的一个被命名为“祖冲之”。祖冲之还曾经计算出圆周率应该在3.1415926和3.1415927之间。

法国巴黎的“发现宫”科学博物馆中也有祖冲之的大名与他所发现的圆周率值并列。在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国着名的科学家肖像中,也有中国的祖冲之和李时珍。

2、华罗庚

华罗庚(1910.11.12—1985.6.12),汉族,籍贯江苏金坛,祖籍江苏省丹阳。世界着名数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。

他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,也是中国在世界上最有影响力的数学家之一,被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。

3、约翰·卡尔·弗里德里希·高斯

1777年4月30日-1855年2月23日,享年77岁,德国着名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一。高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称。

高斯和阿基米德、牛顿、欧拉并列为世界四大数学家。一生成就极为丰硕,以他名字“高斯”命名的成果达110个,属数学家中之最。他对数论、代数、统计、分析、微分几何、大地测量学、地球物理学、力学、静电学、天文学、矩阵理论和光学皆有贡献。

4、阿基米德

公元前287年—公元前212年,伟大的古希腊哲学家、网络式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。

5、勒内·笛卡尔

1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡尔得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界着名的法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。

他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。

⑸ 中国近代现代着名数学家以及其主要研究成果

1.华罗庚
自学成材的天才数学家,中国近代数学的开创人!!
在众多数学家里华罗庚无疑是天分最为突出的一位!!
华罗庚通过自学而成为世界级的数学家,他是解析数论、矩阵几何学

⑹ 中国现代数学成果

中国是世界文明古国之一。16世纪(明代中叶)以前,在数学的许多分支领域里,我国一直处于遥遥领先的 地位。

只是后来在封建制度的束缚下,我国包括数学在内的整个科学技术领域都逐渐落后了。而欧洲则在经历了文艺复兴之后,很多学科一跃超过了东方。

"戊戌变法"后,国家废科举,一些有识之士兴学堂,开始传播西方的科学文化。到"五四"时期,一批学子把西方科学移植到中国,为今天中国的科学奠定了坚实的基础。

熊庆来便是其中杰出的一员。他于1921年从法国留学归来,即将近代数学引进中国,创建了中国第一个数学系(当时称算学系),培养了大量的数学人才。他是中国现代数学辛勤的开拓者。

周恩来总理于1955年视察云南大学时,还特别提到这位当时尚在国外的大数学家、大教育家。他说:"熊庆来培养了华罗庚,这些具有真才实学的人,我们要尊重他们。"

熊庆来,字迹之,1893年9月11日(农历)出生于云南省弥勒县朋普镇息宰村。这是一个只有七八十户人家的偏僻山村,熊庆来的启蒙教育就是在这里完成的。

1907年,婚后不满一个月,酷爱学习的熊庆来到昆明考入方言学堂,两年后,又升入云南英法文专修科,学习法语不到一年,他便能流畅地同法籍教师对话。

1913年,他以优异成绩考取云南省教育司主持的留学比利时的公费生,1914年第一次世界大战爆发,德军侵入了中立的比利时。熊庆来只好离开陷落的比利时,转经荷兰、英国,来到法国,由于战争,法国的矿业学校也关闭了,他便改学数学和物理学。

留学7载,他深受巴斯德、居里夫妇等科学伟人的性格、思想、情操等方面的巨大影响。他先后在巴黎大学、马赛大学等4所大学攻读,取得了高等数学、高等分析、力学、天文、高等普通物理学等证书,并获理科硕土学位。

1921年春,风尘仆仆的熊庆来从法国学成归来。怀着为桑梓服务的热望,他回到了故乡云南,任教于云南甲种工业学校和云南路政学校。

同年,才开办的国立东南大学(今南京大学前身)寄来聘书,请熊庆来去创办算学系。英雄有了用武之地,熊庆来带着妻子和8岁的儿子秉信来到了龙盘虎踞的南京,一展宏图。

年仅28岁的熊庆来不仅被聘为教授,还被任为系主任,他工作负责、授课认真,当时能讲授高深数学理论的仅他一人,故他同时担任了《微分方程》、《高等分析》、《球面三角》、《微积分》等多门课程的数学工作。

5年中他编写了《高等算"学分析》等十多种讲义,他患严重痔疮不能坐,就伏在床上写。过度的劳累又使他患了胸膜炎,但他仍废寝忘食,不顾病痛地工作。

他非常爱惜人才,经常接济穷苦学生。为了培养国家人才,他呕心沥血,不辞劳苦。誉满当代中国科坛的严济慈(全国人大副委员长)、胡坤陛等都曾得到熊老的帮助。

熊庆来常常寄钱给在法国学习的严济慈。有一次,校方因故不发工资,他让妻子去典当皮袍子,寄钱给严济慈。严济慈在法勤奋学习,成绩优异,此前,法国是不承认中国大学毕业文凭效力的。从严济慈起,法国才开始承认中国的大学毕业文凭与法国大学毕业文凭具有同等效力。

1926年,清华学校改办大学,又聘请熊庆来去创办算学系。他在任清华算学系系主任的9年间,又辛勤培养了一大批在国内外享有盛誉的优秀人才。有人说:"中国的数学家约有一半出自清华算学系。

华罗庚就是其中的佼佼者。初中学历的他通过自学,于1930年发表《苏家驹之代数的五次方程式不能成立的理由》这篇论文后,熊庆来慧眼识人才,便把当事务员的他从江苏金坛中学请到清华。 熊庆来重才华轻学历,在很讲究学历的清华力排众议,破例地留下华罗庚并以"助理"名义安排工作,让他有时间、有条件学习。

华罗庚得到熊庆来的直接指导,并可随意听教授们的课,又有条件潜心钻研,可谓"如鱼得水",得以迅速成长,一年之后他被任为助教,再一年后升为讲师,又两年后成为文化基金会研究员。

1936年,经熊庆来和理学院长叶企苏的推荐,华罗庚登上北去的列车,横穿西伯利亚,跨越英吉利海峡,前往英国剑桥大学做访问学者。后来,华罗庚在数论及分析领域取得卓越的研究成果,成为驰名中外的大数学家。

着名的物理学家钱三强、赵九章、彭恒武都是熊庆来在清华任教时的学生。我国第一颗原子弹爆炸后,法国《世界报》载文评述,谈起钱三强的贡献时,还特别指出他是熊庆来的学生。

1930年,熊庆来在代理清华学院院长时,创建了我国第一个数学研究机构--清华算学系研究部,他是指导老师之一。萤声当代数学界的美籍大数学家陈省身,就是当时该部的研究生。

1931年,熊庆来代表中国出席在瑞土苏黎世召开的世界数学会议。这是中国代表第一次出席国际数学会议。世界数学界的先进行列中,从此有了中国人!

会议结束后,熊庆来利用清华规定的五年一次的例假,前往巴黎专攻函数论,于1933年获得法国国家理科博土学位,他定义的无穷级被国际上称为"熊氏无穷级",载人了世界数学史册。

1934年,他返回清华,仍任算学系主任。翌年,他聘请法国数学家H·阿达玛和美国数学家、控制论的奠基人N·魏纳到清华讲学。为高年级学生和研究生开拓视野,帮助他们提高研究能力。

当时的研究生陈省身、吴大猷、庄圻泰、施样林、段学复等人,后来都成为着名学者。熊庆来在晚年曾谦虚地回顾说:"平生引以为幸者,每得与当时英才聚于一堂,因之我的教学工作颇受其鼓舞。"

1936年,在熊庆来和其他数学界前辈的倡议下,创办了中国数学会会刊,熊庆来任编辑委员。这个会刊即是现今的《数学学报》的前身,可称是中国的第一张数学学报。

1937年,应云南省政府之请,熊庆来回到阔别16年的家乡,担任云南大学校长。当时的云南,经济、文化都极为落后,办学条件万分艰苦。然而,熊庆来内心却澎湃着一股为桑梓服务,发展云南教育的热情,一心要"把云大办成小清华"并于1938年7月争取到将云南大学从省立改为国立。

熊庆来认为办好学校的首要关键是精选教师。他凭借自己在学术界的声望,聘请了许多知名学者到云大任教。人们称赞他"有蔡元培兼收并容的风度"。当时云大师资阵容之强大,毫不逊色于一些老牌大学。

他信任人,也善于用人。他给予各学院院长和系主任在很多问题上的自决权,尊重他们的决定。只要拿得出成绩。把系、把学院搞得好的,他总是放手让你干。

他没有校长的架子,一贯平易近人,和蔼可亲,关心别人,逢年过节,他常把单身教员请到家里吃饭。

他勤俭办学。事必躬亲。为了聘到好的教授,他提出给外省来的教授以高薪,他自己和云南籍教员,则只领取规定的工资。

在他的表率作用和严格要求下,学校机构精干,工作效率颇高。注册组、庶务组人少事杂,却把诸事管理得井井有条,并以热情周到的接待让新来的教师觉得云大"是个可以安身立业的地方。"

熊庆来还强调要树立好的校纪校风。他认为必须对学生严格要求,杜绝考试作弊;课堂教学、实验、习题等环节一环也不能放松。如此严格要求的结果,使云大毕业生的质量可与一些老牌大学媲美。

熊庆来任校长的12年中,云大从原有的3个学院发展到5个学院,共18个系,另附专修班和先修科各3个,为国家和民族培养了大批有用之才,为改变云南文化落后的状况作出了重要贡献。

1949年云南学生运动蓬勃开展。6月,熊庆来接到教育部通知,要他立即前往巴黎参加联合国教科文组织会议,就在他登上飞机出发之际,教育部宣布解散云南大学,并撤销其校长职务。

联合国会议结束后,他便暂留巴黎,想在晚年再研究数学问题,以补前12年行政事务缠身而疏离学术研究之憾。

1956年,法国要出一套数学丛书。经法国数学界的推举,其中关于函数论的专着,光荣地落到了一个中国人--熊庆来的身上。于是,他不顾半身不遂之苦,奋力完成了这部专着,深为国际数学界所称道。

然而,祖国在他心中一直是个神圣的字眼。熊庆来在完成了为法国数学丛书写作的那本函数论专着后,毅然带病归国。

熊老回国后,任数学研究所研究员,并担任了所常务委员、学术委员会委员和函数论研究室主任。他在归国欢迎会上诚恳表示:"我愿将我的一点心得献给下一代同志,我愿在社会主义的光芒中,尽瘁于祖国的学术建设事业。"

他一面自己加紧研究,一面积极推动我国数学研究的发展。他于1960年、1961年、1964年几次在全国和北京地区的函数讨论会上作了学术报告,为函数论的研究指明了方向。从1961年起,他倡导举办的函数讨论班,每两周在他家聚会一次,除庄科、庄圻泰、范会国、赵进义等老教授外,还有北京高校的一些中青年教师、研究生,可谓数学上的"四世同堂"。

熊老除积极推动研究工作外,还指导青年研究人员和招收研究生,孜孜不倦地培养青年一代。现在为国际数学界所称道的青年科学家杨乐、张广厚便是他70高龄时最后带的两个研究生。

杨乐、张广厚在函数值分布论研究中关于"亏值"与"奇异方向"间的具体联系的研究成果,还被国际上誉称为"杨张定理"。80年代,这两位青年数学家多次应邀赴欧美国家讲学,为祖国赢得了荣誉。杨乐曾深情地说:"如果我从北大毕业后,没有得到熊老的培养,没有科学院这样一个环境,那是绝对做不出这样的成绩来的!"

可是,令人万分痛心的是,这样一位贡献巨大的学者,在"十年浩劫"中竞被打成"反动学术权威"和"熊华(罗庚)黑线"人物,受着无休无止的批斗和摧残。

1969年2月3日的深夜,熊老在凛冽的寒风中与世长辞了,桌上还摊着上床前没有写完的"交代",一代数学泰斗就如此凄凉地离开了人间……

然而,历史却不会忘记这位为中国数学作出巨大贡献的人。1978年,他的冤案得到了平反。

"太华巍巍,拔海千寻;滇池森森,万山为襟;卓哉吾校,与其同高深。努力求新,以作我民;努力求真,文明允臻。"

今天,一所以他的名字命名的"庆来中学"已在他的家乡弥勒县建立起来,许多后来者正沿着熊庆来开辟的研究道路,奋力前进。

⑺ 在中国建国60周年之际,中国作出了哪些数学方面的成就10月7日前高分悬赏!

华罗庚 中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专着《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论着作之 一。其专着《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部着作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专着和科普性着作数十种。 陈景润 数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等着作。 中国现代数学家——苏步青 苏步青,浙江平阳人,出生于1902年9月,中国现代杰出的数学家。从小的时候起,苏步青就立下大志。中学毕业后赴日本深造。先入东京高等工业学校,后转入日本东北帝国大学数学系,1927年毕业之后进入该校研究生院,1931年获理学博士学位。 在日本东北帝国大学学习期间,苏步青在一般曲面研究中发现了四次(三阶)代数锥面,这是几何研究中的重大突破,在日本和国际数学界引起反响,被称为“苏锥面”。获得了博士学位之后的苏步青谢绝了亲友和导师的挽留,毅然回国,受聘于浙江大学数学系,开始他教书育人生涯。在大学任教时,苏步青尽管生活贫困,条件艰苦,但为祖国培养数学人才的信心始终没有动摇。解放后,苏步青以更大的热情投入到教学工作中去,并培养出了谷超豪、胡和生院士等一大批优秀数学人才。 在进行纯粹的理论研究的同时苏步青还非常的重视实践。他深刻地认识到必须加强应用科学的研究,重视基础科学的研究,使两者有机地结合起来。首创性地将这些理论和方法,应用造船、汽车、建筑、服装等行业。1972年,苏步青和他的两位学生到江南造船厂参加船体数学放样的研究,建立了厂校合作关系。经过4年多的努力,他们和江南造船厂的同志合作,解决了船体线型光顺问题,获得全国科学大会奖。 实际上,苏步青早在上个世纪五十年代就为世人所公认。1951年担任中国数学会理事(以后历任副理事长、名誉理事长)。1955年他就当选为中国科学院数理学部委员,兼任学术委员会常委。1956年被评为一级教授,任复旦大学副校长、复旦大学数学研究所所长,1978年被任命为校长。1979年后任《数学年刊》的主编(其实1935年就被推选为《中国数学学报》主编)。曾任上海市人大常委会副主任;第七、第八届全国政协副主席;全国人大常委会教科文卫专门委员会副主任;民盟中央副主席等职。

⑻ 我国近代的数学家取得了哪些伟大的成就

1、姜立夫

姜立夫(1890—1978),数学家,数学教育家。南开大学数学系的创始人。曾任中央研究院数学所所长。

对中国现代数学教学与研究的发展有重要贡献。姜立夫的学术生涯开始于综合几何的研究。

从40年代起,姜立夫的研究课题主要是圆素与球素几何学,逐步整理出一套以二阶对称方阵作为圆的坐标,以二阶埃尔米特方阵作为球的坐标的新方法。

2、熊庆来

熊庆来(1893年9月11日—1969年2月3日),字迪之,出生于云南省红河哈尼族彝族自治州弥勒市息宰村,中国现代数学先驱,中国函数论的主要开拓者之一,以“熊氏无穷数”理论载入世界数学史册。

熊庆来主要从事函数论方面的研究工作,定义了一个“无穷级函数”,国际上称为“熊氏无穷数”。熊庆来在“函数理论”领域造诣很深。

1932年他代表中国第一次出席了瑞士苏黎世国际数学家大会,1934年,他的论文《关于无穷级整函数与亚纯函数》发表,并以此获得法国国家博士学位,成为第一个获此学位的中国人。

这篇论文中,熊庆来所定义的“无穷级函数”,国际上称为“熊氏无穷数”,被载入了世界数学史册,奠定了他在国际数学界的地位。

3、苏步青

苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国着名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。

他创建了中国微分几何学派,晚年创建开拓了计算几何新的研究方向。

他先后在仿射微分几何、射影微分几何、一般空间微分几何及射影共轭网理论等方面做出了杰出的贡献,创建了国际公认的中国微分几何学派;在70多岁高龄时,还结合解决船体数学放样的实际课题,创建和开始了计算几何的新研究方向。

苏步青的研究方向主要是微分几何。苏步青的大部分研究工作是属于仿射微分几何学和射影微分几何学方向的。

此外,他还致力于一般空间微分几何学和计算几何学的研究。他创立了国际公认的浙江大学微分几何学学派。

4、陈景润

陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。

1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》 。

论文的发表,受到世界数学界和着名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”。

5、华罗庚

华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。

他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。

在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。

20世纪40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计;对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,三角和研究成果被国际数学界称为“华氏定理”。

在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。

与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。

参考资料来源:网络——苏步青

参考资料来源:网络——熊庆来

参考资料来源:网络——姜立夫

参考资料来源:网络——陈景润

参考资料来源:网络——华罗庚

⑼ 当今数学界的最新成就

希尔伯特的二十三个问题:
在1900年8月巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的着名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。

成就的话应该就是这其中一些问题的解决,比如庞加莱猜想。

⑽ 现在数学发展到什么程度了

数学是怎么发展到现在的(规模)?
一个偶然引起一个猜想,然后无数个偶然建立无数个门,那数学是怎么从仅仅用来计量的“东西,成为这么庞大的体系

我尽量避开特别专业的东西,简单的说一下数学发展史。

首先数学的发展分为四个时期:

第一时期

数学形成时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。

第二时期

初等数学,即常量数学时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算术、几何、代数。

第三时期

变量数学时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。它是数学的一个基础学科。内容主要包括极限、微分学、积分学、方程及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

第四时期

现代数学时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征,分支开始变的极其复杂,发展速度奇快。

数学之所以能发展到现在的规模,其中很大一部分原因是因为数学的发展程度限制了当下的技术发展程度,很多情况下都是,我要解决问题,但是没有能够满足我解决问题需求的数学工具,数学除了自己推动自己,很多都是靠其他学科来推动的,例如物理 , 物理和数学两者一直是相辅相成,共同推动发展的。

在简洁一点,笼统一点:

推动数学发展的主要原因,是各种技术的实际需求以及人类对未知技术和学术方面的猜想来推动的。

阅读全文

与现代数学的最新成就是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071