Ⅰ 数学乘法规律
十位数相同,个位数之和为10的两位数相乘,有规律,举例子就能说清楚了:比如:34×36 3×4=12 4×6=24 那么34×36 =1224 28×22 2×3=6 2×8=16 那么28×22 =616 21×29 2×3=6 1×9=09 那么21×29 =609我就知道这一个规律,其他的就不知道了
Ⅱ 小学四年级数学上册 乘法的运算定律是什么
乘法有三大定律:乘法交换律、乘法结合律、乘法分配律。
乘法交换律
乘法交换律的概念为:两个因数交换位置,积不变。
字母公式:A×B=B×A
题例(简算过程):125×12×8
=125×8×12
=1000×12
=12000
乘法结合律
乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。
字母公式:(A×B)×C=A×(B×C)
题例(简算过程):30×25×4
=30×(25×4)
=30×100
=3000
乘法分配律
乘法分配律的概念为:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母公式:(A+B)×C=A×C+B×C
题例(简算过程):(1)12×6.2+3.8×12 (2)20.1×10
=12×(6.2+3.8) =(20+0.1)×10
=12×10 =20×10+0.1×10
=120 =200+1
=201
Ⅲ 小学的乘除法公式是什么
乘法:
因数x因数=积
积÷一个因数=另一个因数
除法:
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b=b×a
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c=a×(b×c)
乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c乘法的其他
拓展资料
小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。荷兰教育家弗赖登诺尔认为:“数学来源于现实,也必须扎根于现实,并且应用于现实。”[1]的确,现代数学要求我们用数学的眼光来观察世界,用数学的语言来阐述世界。从小学生数学学习心理来看,学生的学习过程不是被动的吸收过程,而是一个以已有知识和经验为基础的重新建构的过程,因此,做中学,玩中学,将抽象的数学关系转化为学生生活中熟悉的事例,将使儿童学得更主动。从我们的教育目标来看,我们在传授知识的同时,更应注重培养学生的观察、分析和应用等综合能力。
(资料来源:网络:小学数学)
Ⅳ 乘法的简便方法计算规律
乘法(multiplication),是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
乘法是四则运算之一
例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
3×5表示5个3相加
5x3表示3个5相加。
注意:1.在如上乘法表示什么中,常把乘号后面的因数做为乘号前因数的倍数。
2.参见wiki中对乘数和被乘数的定义
另:乘法的新意义:乘法不是加法的简单记法
Ⅰ 乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
Ⅱ 加法原理:如果因变量f与自变量(z1,z2,z3…, zn)之间存在直接正比关系并且每个自变量存在相同的质,缺少任何一个自变量因变量f仍然有其意义,则为加法。
在概率论中,一个事件,出现的结果包括n类结果,第1类结果包括M1个不同的结果,第2类结果包括M2个不同的结果,……,第n类结果包括Mn个不同的结果,那么这个事件可能出现N=M1+M2+M3+……+Mn个不同的结果。
以上所说的质是按照自变量的作用来划分的。
此原理是逻辑乘法和逻辑加法的定量表述。
法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
运算定律
整数的乘法运算满足:交换律,结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1.乘法交换律: ,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律
3.乘法分配律
Ⅳ 乘法口诀有什么规律
规律:
1、九九表只用一到九这9个数字。
2、九九表包含乘法的可交换性,因此只需要八九七十二,不需要“九八七十二”,9乘9有81组积,九九表只需要1+2+3+4+5+6+7+8+9 =45项积。明代珠算也有采用81组积的九九表。45项的九九表称为小九九,81项的九九表称为大九九。
(5)数学乘法的规律是什么扩展阅读
乘法口诀是中国古代筹算中进行乘法、除法、开方等运算的基本计算规则,沿用至今已有两千多年,九九表也是小学算术的基本功。
用乘法表进行乘法运算,并非进位制的必然结果。巴比伦有进位制,但它们并没有发明或使用九九表式的乘法表,而是发明用平方表法计算乘积。玛雅人的数学是西方古文明中最先进的,用20进位制,但也没有发明乘法表。可见从进位制到乘法表是一个不少的进步。
Ⅵ 乘法口诀表有什么规律
乘法口诀又叫九九乘法表,是一种死记硬背的公式,也是最基层的公式。
Ⅶ 观察乘法口诀表每行或者每列数你能发现什么规律
(1)任何数字和1相乘都等于数字本身;
(2)任何数字乘以2都能得到一个偶数,乘积的末位数字出现2,4,6,8各两次,0一次;
(3)3和1到9每个数字相乘,乘积的末位1到9都有,并且乘积的十位数字与个位数字的和是3的倍数;
(4)任何数字乘以4都能得到一个偶数,乘积的末位数字出现2,4,6,8各两次,0一次;
(5)任何数字和5的乘积的末位只可能是0或5;
(6)任何数字乘以6都能得到一个偶数,乘积的末位数字出现2,4,6,8各两次,0一次;
(7)7和1到9每个数字相乘,乘积的末位1到9都有;
(8)任何数字乘以8都能得到一个偶数,乘积的末位数字出现2,4,6,8各两次,0一次;
(9)9更有意思,9从1乘到9,十位数字从0递增到8,个位数字从9递减到1,并且个位数字与十位数字的和恰是9。
(7)数学乘法的规律是什么扩展阅读:
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
Ⅷ 十位数相同的两位数相乘,积有什么规律
十位数相同的两位数相乘,所得的积无论是三位数还是四位数,积个位的数字,都与十位数相同的两位数个位的数相乘的积相同,例如:14×14=196,24×24=576,84×84=7056,94×94=8836
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。 矩形的区域不取决于首先测量哪一侧,这说明了交换属性。 两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
巧算:
乘法是数学中基本运算之一。假设a乘b等于c,即记为ab=c或a·b=c。中国古代利用算筹进行乘法计算。
筹算乘法分三层:上位是被乘数,中位是积,下位是乘数。先由乘数的最大一位去乘被乘数,乘完后去掉这位的算筹,再用第二位数去乘,两次之积对应位上的数相加,乘完为止。例如81 × 81,先把乘数和被乘数分别放在上位和下位,﹝a﹞。用80去乘81得6480,“8”用完了,便掉去,﹝b﹞。再用1去乘81得81加到6480上,即等于6561,“1”亦用完了,便掉去,得﹝c﹞。