❶ 《小学数学标准(2011年版)》中新增的核心概念中哪些与“数与代数”相关的大致的含义是什么
小学数学《“数与代数”领域相关概念,目标与核心概念》这门课,《标准》中的10个核心概念分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。下面谈一谈我对“符号意识”这一核心概念的认识:
一、符号意识的含义及重要作用
符号:针对具体事物对象而抽象概括出来的一种简略记号或代号。符号表示是人类文明发展的重要标志之一。数学课程的任务之一就是使学生拥有感受和运用符号的能力。新课程根据数学的学科和课程特点,把在解决问题的过程中发展学生的“符号意识”作为义务教育阶段的一个重要的数学学习内容。
符号意识主要指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用,是数学表达和进行数学思考的重要形式。因此,在数学教学活动中要结合教学内容,适时地培养学生的符号意识。符号数学的语言,是人们进行表示、计算、推理、交流和解决问题的工具。学习数学的目的之一是要使学生懂得符号的意义、会运用符号解决实际问题和数学本身的问题,发展学生的符号意识。
符号意识是人对符号的意义、作用的理解,以及主动使用符号的意识和习惯。它包括三层意思:
第一,理解各种数学符号的意义,表示什么意思,在什么时候使用以及怎样使用。用数字表示数量就是一种符号,而从数字抽象出的字母有 a 、 b 、 c 、 x 、 y 等,一般用 a 、 b 、 c 表示常量, x 、 y 表示变量。还有一些运算符号如 + 、 - 、×、÷,在这里指的符号主要是指用字母表示数和运算符号的意义。
第二,理解数学符号的作用与价值,为什么使用符号,有哪些好处。运用符号表示对象是代数表达式所必须,也是从算术思维到代数思维所必须运用的。如加法交换律用语言表示是:两个加数相加,交换加数的位置,和不变。如果用符号表示就是a+b=b+a,既简洁又抽象,这正体现了数学的一种简洁美。从这种意义上讲,符号也是数学的发展与进步。
第三,在学习数学和应用数学时,在独立思考和与人交流时能经常地、主动地、甚至是创造性地使用符号。符号意识反映的是“数学化”及数学表达的能力。符号意识是衡量数学素养的重要标志。因此,在小学阶段我们尤其应该注重学生符号意识的培养。使用符号进行运算和推理,得到一般结论,如公式、定律的推理表示。在小学几何图形的计算公式都是符号意识的体现,如长方形的面积公式是长×宽,用符号表示就是a×b 。
二、符号意识在数学学习中的价值
《标准》中指出:建立符号意识有助于学生理解符号,符号的使用是数学表达和进行数学思考的重要形式。
首先是数学表达:从数量到数(如从四只羊,四个轮子,四条腿到“ 4 ”),从数到字母,从语言到符号表达方式的改变(两个数相加,调换加数的位置得数不变 a+b=b+a) ,抽象程度是不断提高的。
其次是数学思考:从形象思维到抽象思维,从算术思考到代数思考,比如方程的优越性在于把一个未知的数量用字母表示,使未知数与已知的数量同等地位,从而简便了运算和表达。
三、符号意识的主要表现
《数学课程标准》强调应发展学生的符号意识,符号意识主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表示的问题。
(1)能从具体情境中抽象出数量关系和变化规律,并用符号来表示。
对于《标准》所说的“能从具体情境中抽象出数量关系和变化规律,并用符号来表示”,应从以下几方面去理解。
第一,这种表示常常从探索和发现规律以及进行归纳推理开始,然后用代数式一般化地将它们表示出来。
第二,用字母表示的关系或规律通常被用于计算(或预测)某个未给出的或不易直观得到的量。
第三,用字母表示的关系或规律通常也可用于判断或证明某一个结论。
用代数式表示是由特殊到一般的过程,而由代数式求值和利用数学公式求值是从一般到特殊的过程,可以进一步帮助学生体会字母表示数的意义。
能从具体情境中抽象出数量关系和变化规律,并用符号表示,是将问题进行一般化的过程。一般化超越了实际问题的具体情境,深刻地揭示和指明了存在于一类问题中的共性和普遍性,把认识和推理提到一个更高的水平。一般化和符号化对数学活动和数学思考是本质的,一般化是每一个人都要经历的过程。
(2)理解符号所代表的数量关系和变化规律。
第一,使学生在现实情境中理解符号表示的意义和能解释代数式的意义。
如代数式 6p 可以表示什么?学生可以解释为:当 p 表示正六边形的边长时, 6p 可以表示正六边形的周长;当 p 表示一本书的价格时, 6p 可以表示 6 本书的价格; 6p 也可以表示一张光盘的价格是一本书价格的 6 倍;如果 1 个长凳可以坐 6 个小朋友,那么 6p 表示 p 个长凳可以坐 6p 个小朋友。
第二,用关系式、表格、图像表示变量之间的关系。
第三,能从关系式、表格、图像所表示的变量之间的关系中获取所需信息。
(3)会进行符号间的转换。
生活中,符号间的转换是丰富多彩的。这里所说的符号间的转换,主要指表示变量之间关系的表格、关系式、图像和语言表示之间的转换。
用多种形式描述和呈现数学对象是一种有效地获得对概念本身或问题背景深入理解的方法,因此多种表示方法不仅可以加强对概念的理解,也是解决问题的重要策略。从数学学习心理的角度看,不同思维形式,它们之间的转换及其表达方式是数学学习的核心。能把变量之间关系的一种表示形式转换为另一种表示形式,构成数学学习过程中的重要方面。
不论是从表格表示还是关系式表示,我们都可以容易地转化为图像表示。图像对于理解变量之间的关系具有十分重要的意义,图像表示以其直观性有着其他的表示方式所不能替代的作用,图像将关系式和数据转化为几何形式,因此,图像是“看见”相应的关系和变化情况的途径之一。
这几种表示之间是互相联系的,一种表示的改变会影响到另一种表示的改变。
(4)能选择适当的程序和方法解决用符号所表示的问题。
解决问题的第一步是把实际问题转化为数学问题即数学化,第二步是在数学内部的推理、运算等。比如,我们将一个实际问题表示为一个一元二次方程,然后根据方程我们选择用公式去求解。会进行符号运算也是很重要的。
四、在教学中培养学生符号意识
数学符号有多种分类。比较常见的是按照符号的用处分为:对象符号(如数字符号、圆周率符号)、运算符号、关系符号、结合符号(如小括号、中括号)、性质符号(如正号、负号)、略写符号(如因为“∵”、所以“∴”)等。培养学生符号意识首先是让小学生亲近、喜欢符号,接受、理解符号,让学生欣赏符号、感悟符号。其次是让学生初步感悟符号表达的优势与作用,数学语言的转化训练,也有助于符号意识的建立。
在四年级<找规律>一课,设置情境,让学生在寻找规律之时,体会用符号解决实际问题的直观和简约之美,促进学生符号意识的发展。尽可能在实际的问题情境中帮助学生理解符号以及表达式、关系式的意义,在解决实际问题中发展学生的符号意识。在教学中,对符号演算的处理尽量避免让学生机械地练习和记忆,而应增加实际背景、探索过程、几何解释等以帮助学生理解。
学生符号意识的发展不是一朝一夕就可以完成的,而是贯穿于学生数学学习的全过程,伴随着学生数学思维层次的提高逐步发展的。
在实际教学中,我注重从以下四方面培养学生的符号意识:
1、在教学中注意联系学生身边的符号;
2、要重视情境教学,体验情境中对符号的需求,引导学生去感知与领悟。
3、遵循认知规律、渗透数学思想方法,循序渐进地让学生建立并发展符号意识;
4、注意引导学生理解符号所代表意义,尽量避免机械地练习和记忆,应看重探索过程。
❷ 数学核心素养包括哪些内容
小学数学的10个核心素养:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。数学核心素养还对于学生的应用能力的提高有着极大的益处。有助于学生培养实事求是的精神,按照一定思维方式解决问题。
教育以人为本,教师的职责是教学生先做人,后求知。所以教师要用心备学生。想培养出具有核心素养的学生,必须先了解你的学生离具备核心素养还差多少。教师应把培养学生的核心素养作为数学课堂教学的重要内容,切实指导学生积极参加实践性探究活动。
数学是每一个孩子从求学开始都必须要学习的主课,它教给孩子们的不应只是冰冷的数学知识,更重要是要教给学生用数学的眼光看待问题。
学生的数学核心素养不是通过一节课、两节课就可以培养的,对于低段的学生,教师应该更加耐心、细致地进行引导。中国学生发展核心素养,以科学性、时代性和民族性为基本原则,以培养“全面发展的人”为核心,分为文化基础、自主发展、社会参与三个方面。
❸ 如何理解小学数学新课标中的核心概念
在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。 在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。这是一个渗透在整个标准的研制过程中。第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。(二)核心概念的理解 1.数感 数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义。在这里边,有这样两句话,来帮助理解数感。数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟。然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能。学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本。 2.符号意识 关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。因为符号感更多的是感知,是一个最基本的层次。而符号意识对学生理解要求更高一些。在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。 还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。 3.空间观念和几何直观 空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画。具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。这是对于空间观念的一个刻画。 空间观念和几何直观这两个概几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。 4.数据分析观念 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。 5.运算能力 运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。 6.推理能力 推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念。经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面。首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。 7.模型思想 首先说一下标准的解释,就是模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。这个基本上模型思想概括的比较清楚。 8.应用意识和创新意识 首先是应用意识,应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。 从某种意义上,越小的孩子,他越有创新,小孩子的兴趣,小孩子对问题的敏感性,他能提出很多很多成人可能都难以解决的问题,其实他本身就是创新。
❹ 小学数学课标解读重点是什么
《小学数学新课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域。特别突出地强调了10个学习内容的核心概念,分别是数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识。
小学数学新课程标准的特点
数感是一种主动地、自觉地或自动化地理解数和运用数的态度与意识,即能用数学的视角去观察现实,又能以数学的思维研究现实,能用数学的方法解决实际问题。
数感主要表现在理解数的意义,能用多种方法来表示数,能在具体的情境中把握数的相对大小关系,能用数来表达和交流信息,能为解决问题而选择适当的算法,能估计运算的结果,并对结果的合理性作出解释。
培养和发展学生的数感,应该注意以下两个方面一是引导学生联系自己身边具体、有趣的事物,二是注重解决实际问题。
符号感是人对符号的意义、符号的作用的理解,以及主动地使用符号的意识和习惯。
符号感主要表现在能从具体情境中抽象出数量关系和变化规律,并用符号来表示。理解符号所代表的数量关系和变化规律。会进行符号间的转换。能选择适当的程序和方法解决用符号所表达的问题。
发展学生的符号感可以同时从两方面进行一是结合数学内容,及时教给学生一些数学符号,二是鼓励学生创造性地使用自己的独特符号。
空间观念表现为对现实世界里的物体的形状、大小、位置、变化及相互关系的理解与把握,空间观念主要表现在能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化。
能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本的图形,并能分析其中的基本元素及其关系,能描述实物或几何图形的运动和变化,能采用适当的方式描述物体间的位置关系,能运用图形形象地描述问题,利用直观来进行思考。
在实际教学中,我们要把发展学生的空间观念落到实处,增加学生动手实践的机会。
数据分析是指在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断,体会数据中蕴含着的信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。
一方面对于同样的事物、每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,所以说,数据分析是统计的核心,数据分析观念是人对数据统计活动的体会与理解,是自觉应用统计方法解决问题的意识。
数据分析观念主要表现在能从统计的角度思考与数据信息有关的问题,能通过收集数据、描述数据、分析数据的过程作出合理的决策,认识到统计对决策的作用,能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
发展小学生的数据分析观念,可采用的方法一是组织学生经历统计活动的全过程,二是培养学生从报刊、杂志、电视等媒体中获取信息的意识,读懂统计图表,并能与同伴交流。
应用意识是综合运用已有的知识和经验,经过自主探索和合作交流,解决与生活经验密切联系的、具有一定挑战性和综合性的问题。
应用意识主要表现在认识到现实生活中蕴含着大量的数学信息、数学在现实世界中有着广泛的应用,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,面对新的数学知识时,能主动地寻找其实际背景,并探索其应用价值。
培养学生的应用意识,应注意以下几点一是指导学生选好题目,二是明确活动目标,三是强调自主性与交流的要求,四总结与评价。
合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理,归纳推理、类比推理和统计推理是合情推理的主要形式。
推理能力主要表现在能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例,能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据,在与他人交流的过程中,能运用数学语言、合乎逻辑地进行讨论与质疑。
培养小学生的推理能力,应该做到以下两点首先,把培养学生的推理能力贯穿在日常数学教学中,其次,把推理能力的培养落实到《标准》的四个内容领域之中。
❺ 小学数学核心素养包括哪些
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、 运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义, 理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律; 知道使用符号可以进行运算和推理,得到的结论具有一般性。 建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形, 根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系; 描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观 利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简 明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出 判断,体会数据中蕴涵着信息。
了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的方法; 通过数据分析体验随机性。数据分析是统计的核心。
6、运算能力
能够根据法则和运算律正确地进行运算的能力。 培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
数学核心素养的特点:
1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件。
2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑。
3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。
❻ 小学数学核心素养包括哪些
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息。
❼ 小学数学概念教学中涉及哪些概念
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
❽ 小学数学概念大全
小学数学180天
链接:
若资源有问题欢迎追问~
❾ 小学数学10个核心概念
十个核心概念有:①数感、②符号意识、③空间观念、④几何直观、⑤数据分析观念、⑥运算能力、⑦推理能力、⑧模型思想、⑨应用意识、⑩创新意识。