⑴ 生活中什么地方可以体现出数学
我觉得生活中哪里都可以体现出数学的作用,数学涉及到我们生活的方方面面,只要你细心发现都可以发现了数学的存在。就拿最简单来说的吧,我们自己上街买个菜我们都需要用到数学,因为我们要算钱多少。我们很自然而然的会自己算一下,因为我们不放心,害怕被别人骗。只有当自己算过之后,那心里面才会觉得踏实。
我觉得现在的父母都非常注重自己孩子的学习,虽然自己不读书很多年了,但是还是会辅导自己的孩子做功课的,然而数学这个科目对小孩子还是比较难的,很多时候需要父母去辅助,这时候就要体现你的数学能力了,可以这样跟你说,现在的小学问题越来越难了,对于那些大学生也不一定会做,这的确是考验了很多父母的数学能力了。所以我们每个人即使现在不是别人的爸爸妈妈,但是别以为自己不需要接触数学了。
我们每个人工作都会收到工资,然后我们大部分人都会把工资存到银行里面。对于我们的工资,很多人会有不同的做法,有些人可能会存在银行里面,有些人则拿去做投资,对于自己的工资的话,如果你自己不懂得数学,那就麻烦了,你到底亏多少赚多少,总额有多少,那你可能也不知道。我们平时存多少钱进去,到期之后会有多少钱,这我们应该是需要知道的。当你不知道时候,你不会觉得心里面不踏实吗?数学的作用是很广的。
还有很多方面,再比如从健康这个方面来说吧,我们很多人都会注重自己的身体状况。有一些公司是用于衡量我们的身体健康状况的,比如说那个体重指数那就需要我们计算了。
⑵ 数学的简洁美主要体现在什么地方
19世纪大数学家高斯就说过“数学是科学中的皇后”),它具有简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异美(有限美、神秘美等)。美在一个困难问题的简单解答,一个复杂问题的简单答案;美在种种图案、建筑物、衣服式样、家具及装饰等事物的对称性上;美在人们对和谐、有规律的事物的喜爱以及从事物中发现普遍性与统一性的秩序和规律中。 1、美观:数学对象以形式上的对称、和谐、简洁,总给人的观感带来美丽、漂亮的感受。 比如:几何学常常给人们直观的美学形象,美观、匀称、无可非议; 在算术、代数科目中也很多: 如(a+b)·c=a·c+b·c; a+b=b+a 这些公式和法则非常对称与和谐,同样给人以美观感受。 但是外形上的的美观,并不一定是真实和正确的。 比如:sin(A+B)=sinA+sinB是何等的“对称”、“和谐”、“美观”啊!但是它是错误的,就象“”虽然美丽但是有“毒”。 2、美好:数学上的许多东西,只有认识到它的正确性,才能感觉到它的“美好”。 不美丽的例子很多,比如二次方程的求根公式,无论从哪方面看都不对称、不和谐、不美观。但是,当我们真正了解它、运用它,就会感到它的价值,它的美好。这一公式告诉我们许多信息:±表示它有两个根,a≠0、△会显示根的数目和方程的性质…… 3、美妙:美妙的感觉需要培养,美妙的感觉往往来自“意料之外”但在“情理之中”的事物。三角形的高交于一点就是这样;2个圆柱体垂直相截后将截面展开,其截线所对应的曲线竟然是一条正弦曲线,与原来猜想的是一断圆弧大出“意料之外”,经过分析证明的确是正弦曲线,又在“情理之中”,美妙的感觉就油然而生了。 4、完美:数学总是尽量做到完美无缺。这就是数学的最高“品质”和最高的精神“境界”。欧氏几何公理化体系的建立,“1+1”的证明都是追求数学完美的典型例子。
⑶ 数学课程标准的基础性、普及性、发展性体现在哪些方面
基础性:数学是所有科学的基础。 普及性:所有人都要学。 发展性:数学高深莫测。哈哈
这种问题,可能问学政治,学语文的人会比较好。 数学人不懂这种虚的东西
⑷ 数学的美体现在生活的哪些方面
数学的美体现在哪些方面
(1)完备之美
没有那一门学科能像数学这样,利用如此多的符号,展现一系列完备且完美的世界。就说数吧,实数集是完备的,任意多的实数随便做加减乘除乘方开方,其结果依然是实数(注意:数学上完备是根据序列的收敛性严格定义的,我这里不是完备的严格说法,但可认为是广义的说法)。引入虚数单位,实数集扩展到复数集,还是任意多的复数,还做那些运算,结果还是复数。
把具体的数抽象成空间中的点,在一定的假设和约定之下,可以得到完备的空间,这些空间可以是一维的,也可以是二维三维甚至多维的。三维之外,你就难以想象,但不能否认其存在。某空间的点、序列依一定的法则进行运算,依然不能离开那个空间,这就是完备性。这种完备性是很奇妙的。你可以把它想象成在一个球体中,不管你如何运动,总是不能钻出球面。
具有完备性的空间,可以带来许多好处。工程中用得最多的空间是Hilbert空间。顺便提一句,Hilbert是个二十世纪最伟大的数学家之一。
另外,数学中的诸多体系,其本身也都是完备的,如欧式几何,这是大家所熟知的,在几个公理的基础上,推演出一系列漂亮的结论,生命力经久不衰,尤其在工程运用中。
(2)对称之美
提到对称的美,大家首先想到的是几何,其实几何只是一方面,是“看得见”的那一方面。实际上,对称性在数学中处处存在。如微积分的基本定理,展现了微分与积分之间的紧密联系,本身具有很强的对称性。如泛函中的对偶算子,不但在运算上具有显着的对称性,在性质上也处处显示出一致性。
(3)简洁之美
数学中有个非常漂亮的公式,那就是欧拉公式。这个式子把数学中几个“伟大的”数给联系到了一块,它们分别是自然对数、圆周率、虚数单位以及1,其中前两个是超越数,是无数个超越数中人类目前仅仅找到的两个,而且这两个对数学影响巨大。我大胆猜想,当下一个超越数被找到的时候,数学将会经历另一场巨大的革命。虚数单位今天看起来没什么特别,但它刚被引进的时候曾受到众多(大)数学家的置疑和反对,最后它终于还是进来了,而数学也开辟了一条康庄大道,那就是复变函数。
勿庸置疑,欧拉公式是简洁而完美的,另一个可以跟它抗衡的式子出现在物理学中,那就是爱因斯坦的质能变换公式。我这种说法可能有点武断,不过我目前只能想到这一点,呵呵。
(4)抽象之美
这一点可能会引起许多人的异议,因为在许多人看来,抽象是不好的,因为离现实太远。可是我不这么认为,数学如果不抽象,便难以发展,虽然很多问题都是从现实引出的。数学建立在符号逻辑的基础之上,即使是解决实际问题,也要把问题抽象出来,用数学符号表示,才可以很好的解决。另一方面,抽象的数学,能带动你在无限的思维空间中遨游,抛开一切杂念,成为一种美好的享受。当然,这有点理想化,但不可否认,这确实是一种美的体验。
⑸ 数学教学的趣味性表现在哪些方面
数学是研究现实世界的数量关系和空间形式的科学,是一门专业性很强的学科。因为其较强的专业性,很多教师在数学课堂中都没有其他的想法,只是一味不遗余力地教学生进行计算、推理、题型讲解和训练,恨不得让学生多学一点,可是花了很多工夫,下了很大力气,结果却收效甚微,学生还是觉得数学很难,甚至觉得枯燥和乏味。久而久之,学生就丧失了学习数学的兴趣,这对数学教学是非常不利的。
一、创建良好的课堂学习氛围
轻松愉快的课堂氛围对学生的学习活动是十分有利的。要注意运用教师的感染力,在向学生提出要求时,使学生感到亲切、善意,这样做,教师提出的要求很容易被学生接受并成为推动学习的动力。在教学过程中还要让学生感受到师生“共同在解决问题”,建立一种友好的合作关系。同时,尊重学生个性发展,不挫伤学生积极性,教学中允许学生畅述己见,动手动脑结对议论,给学生创造一个能主动探索的条件,使之更生动活泼自觉地学习。要重视建立宝贵的师生共同见解的气氛。另外,要适当的鼓励学生。从儿童心理特点来看,当他们看到自己的进步,内心产生对学习的愉快情感,体验时,就会增强学习兴趣和求知欲,信心更足。让学生及时了解自己学习结果,利用学习成果反馈作用是很有成效的。另外,要特别注意为差生在心理上精神上创造条件,创造一种善意的环境,激发他的兴趣和提高他的积极性,这样差生的自信心就增强了,上课不再担心、紧张,对学习也就感到愉快了。
有了良好的学习氛围,抽象,逻辑性强的数学学习过程对小学生来说也就更易于接受了。
二、善于运用多种趣味教学方式
教学过程中,要根据教学的内容,设计多样的教学方式,迎合学生的兴趣,吸引学生主动学习,达到教学目的。在课堂教学中,教师要因时、因事制宜,充分挖掘教具、实物、知识本身或某些生活情节蕴藏的魅力,让学生去领会数学内容的真谛,激励学生去探索发现。
(1)手脑并用的实践操作
小学生的普遍心理特点是好动。如果把他们好动的特点迁移到教学中去,让他们在学习过程中能够多动手,多思考,可以激发他们的学习兴趣,加深理解知识。我在教学过程中,就常常让学生们动手摆一摆小棍,圆片,三角形等等实物,让他们加深对这些物体数学特性的认识。
(2)灵活多样的游戏方式
教学过程中,适当的采用做游戏的方式,让学生在游戏中学习,可以使学生对学习产生浓厚的学习兴趣,获得良好的教学效果。据心理学研究,新颖的、活动的、直观形象的刺激物,最容易引起儿童大脑皮层有关部位的兴奋,形成了优势的兴奋灶,从而使儿童更好地建立暂时联系。
(3)新颖的练习方式
要把学生获得的知识变为技能,需要反复多练。但重复单调的练习,学生就会厌烦,注意力不集中,白白浪费了宝贵的时间。教师可以通过做游戏、打比赛等多种形式发挥身体各种器官的感觉能力,加深器官感知度,成为身体各器官都共知共晓的事物,延长记忆的保持时间。总之,练习的方式要多样新颖。
三、引导学生发现生活中数学的“趣味”
“生活数学”强调数学教学与社会生活相接轨。在传授数学知识和训练数学能力的过程中,教师要融入生活内容;在参与关心学生生活过程中,引导学生学会运用所学知识为自己生活服务。教师在课堂上要以生动有趣的情境来启发诱导学生,在课外要引导学生运用数学知识解决实际问题,激发学生强烈的求知欲,让学生亲自探索、发现、解决问题,成为“自主而主动的思想家”,感受数学学习的乐趣,获取成功的喜悦,真正成为学习的主人。
⑹ 数学教学论 数学语言的专业性有哪些体现
数学语言的专业性体现在它的数量上。因为这些专业术语在日常生活中是很少用到的。比如说,方程、商、积、对角线等等。所以我们要有意识的运用这些专门的数学语言,并且要正确运用,养成数学语言规范的习惯。
另外,这里的“专业”是相对而言的,因为我国现行数学教科书在内容编排上采用的是螺旋上升的原则,所以在不同学段,不同的教学内容中“专业性”的涵义有所不同。
(6)数学的简洁性体现在哪里扩展阅读:
数学语言的特点有:
1、准确性:每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,结论错对分明。数学学科涉及计算测量,很多情况下要求数据的精确。例如:“过一点有且只有一条直线与已知直线垂直”,它不但要求唯一性,同时要求完备性。在不同的条件限制下,数学中的结论是会发生变化的。例如:“沿着圆柱体的侧面剪开就得到一个长方形”。这句话是错的,只有沿着侧面上的一条高剪开才是长方形,斜着剪是平行四边形。所以,数学语言一定要准确。
2、逻辑性:数学以严密的逻辑结构作为学科的骨架,违背了逻辑就违背了数学的真缔。数学语言要符合客观的规律性,即讲话要有根有据、有因有果、有前提有结论,要么由因导果,要么执果索因,足以体现在逻辑思维的解题过程当中。同时数学中概念的外延和内涵、定义、分类、归纳、演绎等等,都与逻辑思维有关。
3、简洁性:数学语言具有明显的简洁性,它尽可能用最少的语言符号去表达最复杂的形式关系。数学语言大大缩短了语言表达的长度,使叙述、计算和推理更清晰、明确。数学语言不仅是最简单和最容易理解的语言,而且也是最精炼的语言,简洁性是数学语言最突出的表现。
4、专业性:其实数学的专业性是显而易见的,从它的数量上就可以看出来。而这些专业术语在日常生活中是很少用到的。比如说,方程、商、积、对角线等等。所以我们要有意识的运用这些专门的数学语言,并且要正确运用,养成数学语言规范的习惯。
⑺ 数学科学的特殊性表现在哪些方面
一般认为,数学有三个显着特点,这就是抽象性,逻辑严密性,应用广泛性,数学的以上三个特点是互相联系,互相影响,密不可分的,认识数学的以上特点,并注意在中学数学教学中正确把握好数学的特点,具有重要意义。
1.抽象性
所谓抽象就是在思想中分出事物的一些属性和联系而撇开另一些属性和联系的过程。抽象有助于我们撇开各种次要的影响,抽取事物的主要的、本质的特征并在“纯粹的”形式中单独地考察它们,从而确定这些事物的发展规律,数学以高度抽象的形式出现,首先是其研究的基本对象的高度抽象性。数学抽象最早发生于一些最基本概念的形成过程中,恩格斯对此作了极其精辟地论述:“数和形的概念不是从其他任何地方,而是从现实世界中得到来的。人们用来学习计数,也就是作第一次算术运算的十个指头,可以是任何别的东西,但总不是知性的自由创造物。为了计数,不仅要有可以计数的对象,而且还要有一种在考察对象时撇开它们的数以外的其他一切特性的能力,而这种能力是长期以经验为依据的历史发展的结果。和数的概念一样,形的概念也完全是从外部世界得来的,而不是从头脑中由纯粹的思维产生出来的。必须先存在具有一定形状的物体,把这些形状加以比较,然后才能构成形的概念。纯数学是以现实世界的空间形式和数量关系,也就是说,以非常现实的材料为对象的。这种材料以极度抽象的形式出现,这只能在表面上掩盖它来源于外部世界。但是,为了对这些形式和关系能从它们的纯粹形态来加以研究,必须使它们完全脱离自己的内容,把内容作为无关紧要的东西放在一边;这样就得到没有长宽高的点,没有厚度和宽度的线,a和b与x和y,常数和变数;只是在最后才得到知性自身的自由创造物和想象物,即虚数,[1]数的概念,点、线、面等几何图形的概念属于最原始的数学概念。在原始概念的基础上又形成有理数、无理数、复数、函数、微分、积分、n维空间以至无穷维空间这样一些抽象程度更高的概念。从数学研究的问题来看,数学研究的问题的原始素材可以来自任何领域,着眼点不是素材的内容而是素材的形式,不相干的事物在最的侧面,形的侧面可以呈现类似的模式,比如代数的演算可以描述逻辑的推理以至计算机的运行;流体力学的方程也可能出现在金融领域,数学强大的生命力就在于能够把一个领域的思想经过抽象过程的提炼而转移到别的领域,纯数学的研究成果常常能在意想不到的地方开花结果。有些外国数学家由于数学研究对象的抽象性,就认为数学是不知其所云为何物,这种认识是不妥的。
数学科学的高度抽象性,决定数学教育应该把发展学生的抽象思维能力规定为其曰标。从具体事物抽象出数量关系和空间形式,把实际问题转化为数学问题的科学抽象过程中,可以培养学生的抽象能力。
在培养学生的抽象思维能力的过程中,应该注意从现实实际事物中抽象出数学概念的提炼过程的教学,又要注意不使数学概念陷入某一具体原型的探讨纠缠。例如,对于直线概念,就要从学生常见并可以理解的实际背景,如拉紧的线,笔直的树干和电线杆等事物中抽象出这个概念,说明直线概念是从许多实际原型中抽象出来的一个数学概念,但不要使这个概念的教学变成对直线的某一具体背景的探讨。光是直线的一个重要实际原型,但如果对于直线概念的教学陷入到对于光的概念的探究,就会导致对直线概念纠缠不清。光的概念涉及了大量数学和物理的问题,牵涉了近现代几何学与物理学的概念,其中包括对欧几里得几何第五公设的漫长研究历史,非欧几何的产生,以及光学,电磁学,时间,空间,从牛顿力学的绝对时空观,到爱因斯坦的狭义相对论和广义相对论,等等。试图从光的实际背景角度去讲直线的概念,陷入对于光的本质的讨论,就使直线的概念教学走入歧途。应该清楚,光不是直线唯一的实际原型,直线的实际原型是极其丰富的。
在培养中学生的抽象思维能力方面,要注意的一个问题是应根据中学生的年龄心理特点,对中学数学教学内容的抽象程度有所控制,过度抽象的内容对普通中学生来说是不适宜的(如某些近代数学的概念)。另外,对于抽象概念的学习应该以抽象概念借以建立起来的大最具体概念作为前提和基础,否则,具体知识准备不够,抽象概念就成为一个实际内容不多的空洞的事物,学生对于学习这样的抽象概念的重要性和必要性就会认识不足。
2.严密性
所谓数学的严密性,就是要求对于任何数学结论,必须严格按照正确的推理规则,根据数学中已经证明和确认的正确的结论(公理、定理、定律、法则、公式等),经过逻辑推理得到,这就要求得到的结论不能有丝毫的主观臆断性和片面性。数学的严密性与数学的抽象性有紧密的联系,正因为数学有高度的抽象性,所以它的结论是否正确,就不能像物理、化学等学科那样,对于一些结论可以用实验来加以确认,而是依靠严格的推理来证明;而且一旦由推理证明了结论,这个结论也就是正确的。
数学科学具有普遍的严格逻辑性特点,而在数学发展历史中则有许多非常典型的例子。例如,对于无限概念逐步深入的认识,毕达哥拉斯学派对于无理数的发现,牛顿、莱布尼兹的微积分及其严格化,处处连续却处处不可导的函数的构造,集合论悖论的构造,都很好地说明了数学的这种严格的风格和精神。
数学中严谨的推理使得每一个数学结论不可动摇。数学的严格性是数学作为一门科学的要求和保证,数学中的严格推理方法是广泛需要并有广泛应用的。学习数学,不仅学习数学结论,也强调让学生理解数学结论,知道数学结论是怎么证明的,学习数学科学的方法,包括其中丰富蕴涵的严格推理方法以及其他的思维方法。如果数学教学对于一些重要结论不讲证明过程,就使教学价值大为降低。学生也常常因为对于一些重要而基本的数学结论的理解产生困难而不能及时得到教师的指导解惑而对数学学习失去兴趣和信心。根据对于新高中数学课程教学的一些调查,新教材中对于某些公式的推导,某些内容的讲解方面过于简单,不能满足同学的学习要求,特别典型的立体几何中的一些关系判定定理只给出结论,不给出证明,方法上采用了实验科学验证实验结论的方法进行操作确认,就与数学科学的精神和方法不一致,老师们的意见比较多,是日前数学教学实践面临的一个问题。数学教学的一个重要目标是教学生思维的过程与方法,让学生充分认识数学结论的真理性、科学性,发展严密的逻辑思维能力。
严密性程度的教学把握当然应该贯彻因材施教的原则,根据学生和教学实际作调适,数学教材(包括在教师教学用书中)可提供严密程度不同的教学方案,备作选择和参考。例如,对于平面几何中的平行线分线段成比例定理,在实际教学中就可以根据教学实际情况采用三种不同的教学方案,第一种是初中数学教材(如人民教育出版社中学数学室编写的《九年义务教育三年制初级中学教科书几何第二册》)普遍采用的,即从特殊的情形作说理,不加证明把结论推广到一般情形;第二种是用面积方法来得到定理的证明(如任命教育出版社中学数学室编写的《义务教育初中数学实验课本几何第二册》的证明方法);第三种则分别就比值是有理数、无理数的不同情况来加以证明,是严密性要求较高,对学生的思维能力要求也较高的一种教学方案(如前苏联的某些初中数学教材的教学要求)。可以肯定,长期不同程度的教学要求的差异也自然导致学生数学能力的较大差异。从培养人才的角度认识,当然应该为不同的学生设计不同的教学方案,才能有利于学生得到充分的发展。
此外,数学科学中逻辑的严密性不是绝对的,在数学发展历史中严密性的程度也是逐步加强的,例如欧几里得的《几何原本》曾经被作为逻辑严密性的一个典范,但后人也发现其中存在不严格,证明过程中也常常依赖于图形的直观。在中学数学教学中培养学生逻辑思维能力的问题上,要注意严密的适度性问题,在这方面,我国中学数学教材工作者和广大教师在初等数学内容的教学处理上作了许多研究,许多处理方式反映了中学生的认识水平,具有重要价值,例如,中学代数教学中许多运算性质的教学,其逻辑严格性不可能达到作为科学意义下数学理论的严格程度,一直以来的处理方法是基本合理的。
此外,在数学教学上追求逻辑上的严密性需要有教学时间的保证,中学生学习时间有限。目前,在实施高中数学新课程以后,各地实际教学反映教学内容多而课时紧的矛盾比较突出,教学中适当地减少了一些对中学生来说比较抽象,或难度较大,或综合性较强的教学内容,使教学时间比较充裕以利于学生消化吸收知识。在目前的高中数学新课程试验中,教学内容的量怎样才比较合理,让一部分高中学生能够学得了的新增的数学选修课内容(尤其是选修系列四的部分专题)切实得到实施,以贯彻落实新高中课程的多样性和选择性,也是值得继续探讨的重要问题。
与此相关的一个问题,数学教学要处理好过程与结果的关系。学习数学基本而重要的日标是会解决各种问题,过分地强调数学教学中的逻辑与证明又会导致知识面不宽,以致对于许多影响深远、应用广泛的数学方法了解不够。这说明,数学教育一方面应该重视逻辑思维能力的培养,还应该重视科学精神的培养,数学思想方法的领会。就数学结论的严格性和严密性,严格和严密的态度是需要的,但是,在一些特定的教学阶段,只要不导致逻辑思维能力的降低,不影响学生对于结论的理解,对于某些类同的数学定理的证明应该可以省略,这应该不会影响数学能力的培养。
其他科学工作为了证明自己的论断常常求助于实验,而数学则依靠推理和计算来得到结论。计算是数学研究的一种重要途径,所以,中学数学教学必须培养学生的数量观念和运算能力。现在的计算工具更加先进,还可以借助于大型的计算系统,这使计算能力可以大大加强。新的高中数学课程增设了算法的内容,充实了概率统计、数据处理的内容,在高中技术课程中又增加了“算法与程序设计”模块,这体现了计算机和信息时代对于培养运算能力的新要求。从目前中学数学实际教学情况看,算法内容的教学由于技术条件的限制而存在落实不够的情况,应该解决教学中存在的实际困难,如算法在计算机上真正实现运算,使教学落到实处,这就涉及计算机语言的问题,但在中学数学课程中直接引入计算机程序设计语言又似乎使中学数学教学的内容过于技术化和专门化,这是值得研究的一个问题。
3.应用广泛性
在日常生活、工作和生产劳动以及科学研究中,数量关系和空间形式方面的问题是普遍存在的,数学应用具有普遍性。数学这门历史悠久的学科,在第二次世界大战以来出现了空前的繁荣。在各分支的研究取得重大突破的同时,数学各分支之间、数学与其他学科之间的新的联系不断涌现,更显着地改变了数学科学的面貌。而意义最为深远的是数学在社会生活的作用的革命性变化,尤为显着的是在技术领域,随着计算机的发展,数学渗入各行各业,并且物化到各种先进设备中。从卫星到核电站,从天气预报到家用电器,新技术的高精度、高速度、高自动、高安全、高质量、高效率等特点,无一不是通过数学模型和数学方法并借助计算机的计算控制来实现的。计算机软件技术在高新技术中占了很大比重,而软件技术说到底实际上就是数学技术,数字式电视系统,先进民航飞机的全数字化开发过程,大量的例子说明了,在世界范围数学已经显示出第一生产力的本性,她不但是支撑其他科学的“幕后英雄”,也直接活跃在技术革命第一线。数学对于当代科学也是至关重要的,各门学科越来越走向定量化,越来越需要用数学来表达其定量和定性的规律。计算机本身的产生和进步就强烈地依赖于数学科学的进展。几乎所有重要的学科,如在名称前面加上“数学”或“计算”二字,就是现有的一种国际学术杂志的名字,这表明大量的交叉领域不断涌现,各学科正在充分利用数学方法和成就来加速本学科的发展。关于数学应用的广泛性问题,哈佛大学数学物理教授阿瑟·杰佛(Arthur Jaffe)在着名的长篇论文《整理出宇宙的秩序──数学的作用》(此文是美国国家研究委员会的报告《进一步繁荣美国数学》的一个附录)中作了精辟的论述,他充分肯定了数学在现代社会中的重要作用;“过去的四分之一世纪中,数学和数理技术已经渗透到科学技术和生产中去,并成为其中不可分割的组成部分。在现今这个技术发达的社会里,扫除数学盲’的任务已经替代了昔日扫除文盲’的任务而成为当今教育的重要曰标,人们可以把数学对于我们社会的贡献比喻成空气和食物对于生命的作用。事实上,可以说,我们大家都生活在数学的时代──我们的文化已经数学化。在我们周围,神通广大的计算机最能反映出数学的存在,……,若要把数学研究对我们社会的实用价值写出来,并说明一些具体的数学思想怎样影响这一世界,那就可以写出几部书来。”他指出:“(1)高明的数学不管怎么抽象,它在白然界中最终必能得到实际的应用;(2)要准确地预测一个数学领域到底在那些地方有用场是不可能的。”[2]有许多数学家常常对自己的思想得到的应用感到意外。例如,英国数学家哈代(G H Hardy)研究数学纯粹是为了追求数学的美,而不是因为数学有什么实际用处,他曾自信地声称数论不会有什么实际用处,但四十年后质数的性质成了编制新密码的基础,抽象的数论与国家安全发生了紧密关系。“计算机科学家报告说每一点数学都以这样或那样的方式在实际应用中帮了忙,物理学家则对于数学在自然科学中异乎寻常的有效性’赞叹不已。”
其次,数学教育应该注意培养学生应用数学的意识和能力,这已经成为我国数学教育界的共识。但应该注意的另一方面,数学的应用极其广泛,在中小学有限时间内,介绍数学应用就必须把握好度。数学的应用具有极端的广泛性,任何一个数学概念、定理、公式、法则都有极广的应用。而过量和过度的数学应用问题的教学必然影响数学基础理论的教学,而削弱基础理论的学习又将导致数学应用的削弱。在中学数学教学中,重在让学生初步了解数学在某些领域中的应用,认识数学学习的价值从而重视数学学习。另外,数学的应用也不仅限于具体知识的实际应用,很重要的是一些数学观念和思想在实际工作中的运用。中小学是打基础的时候,所谓打基础主要是打数学基本知识和技能的基础,要让学生有较宽广的数学视野,不应该以在实际中是否直接有用作为标准来决定教学内容的取舍,也不应该要求学生数学学得并不多的时候就去考虑过最的应用问题。初中数学教学实践反映,一些传统的教学内容被删减对于学生数学学习产生了不良影响;高中数学新教材实验回访也反映,高中数学教科书中某些部分实际问题份量“过重”,不少实际问题的例、习题背景太复杂,教学中需花很多时间帮助学生理解实际背景,冲淡了对主要数学知识的学习。实际上,学生参加工作后面临的实际问题会有很大的差异,学生的工作生活背景差异也很大,学生对于实际背景、实际问题的兴趣会有很大的差异,另外实际问题涉及因素常常较多,对于中小学生,尤其是对于义务教育中的学生而言常常显得比较复杂。数学在某一个特殊领域的应用就必然涉及这个领域的许多专门化的知识,对于学生成为较大的困难。此外,学校教育虽然是为学生今后参加工作和生产作的准备,但也不必让学生化过多时间去思考成人阶段才会遇到的一些实际问题,有些实际问题不如留给成年人去考虑。2001年,人民教育出版社中学数学室邀请北京大学数学科学学院田刚教授等谈数学教育的有关问题,他们在谈到对于数学科学及其教学的看法时指出:数学主要还是计算与推理,从数学中能学到的,最重要的是逻辑思维,抽象化的方法,这是一些普遍有用的东西;数学教育中逻辑思维能力的培养要加强,就应用而言,目前的信息技术中就非常需要很强的逻辑思维能力,尤其是编写程序,编程有长有短,短的出错的可能性小一些,怎样才能短一些又解决问题,不出现错误,这就需要逻辑思维;美国进行微积分的教学改革,用高级的图形计算器,能直观地看,用逼近的方法;技术能对直观地把握数学有一定的帮助,不过真正重要、有用的还是用逻辑推导公式;数学教育要教一些基本的东西。
第三方面,数学具有广泛应用,但并非所有学生都会去从事需要很深奥的数学知识的工作,单就直接应用数学的角度而言,不必每个学生都学习很高深的数学理论。普通百姓经常应用的是最基本的数学知识,学习数学很重要的目的是通过学习提高思维能力。所以,在中小学阶段,一方面数学教学要面向全体学生,使人人都有机会获得良好的数学教育,另一方面也应该根据学生的实际和他们的兴趣爱好,根据每个学生的学业、智能发展特长,让不同的学生在不同的方面得到不同的发展,当然,对于规划在科学和技术领域发展的学生必然应该打下良好的数学基础。大家注意到,大量在中学阶段打下了良好数学基础的学生,包括部分国际国内中学数学竞赛中的优胜者,却没有在后续学习阶段继续以数学作为自己的主要发展方向而选择其他的领域,而选择理工科专业的学生常常在大学阶段仍学习很多的数学科学的课程,这也说明了数学应用的广泛性和数学对于学生发展的重要价值。
⑻ 数学应用的广泛性体现在哪些方面
数学是研究客观世界中数量关系和空间形式的一门学科。
数学有三个明显的特点,即抽象性、精确性和应用的广泛性。
数学应用的广泛性体现在三方面:
1、社会生活的计算。
2、现代科技的发展。
3、科学部门的运用。
⑼ 数学思维的深刻性体现在哪里最好用具体的例子来说明
A.B两个点在一条直线的两侧,如果在二维平面内,两点间隔直线无法直接从A到B,在三维体内则直接跨越直线,
再举个事例,一张四条退的桌子放在不平的地面上,如果桌子不稳,我们通常不桌子在原地转90多度就稳了,问什么啊?这在数学中完全可以用方程式证明出来!