① 初中数学有哪些内容
我只能给你总结一些知识点,见谅见谅 初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。 代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。 以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)
② 中学数学课程类型有哪些
基本类型主要有学科课程、活动课程、综合课程、核心课程。
③ 初中数学题型有哪些
复习核心
注重课本知识,查漏补缺
注重课堂学习,提高效率
注意知识的迁移,学会融会贯通
试卷的基本情况
1.试卷结构:由填空、选择、解答题等28个题目组成。
2.考试内容:根据《数学课程标准》要求,将对“数与代数”“空间与图形” “统计与概率”“实践与综合应用”四个领域的知识进行考查。按知识版块进行系统归纳代数具体为:(1)实数的概念及其运算;(2)代数式的分类、概念及其运算;(3)方程(组)的概念、性质、解法及应用:(4)不等式(组)的概念、性质、解法:(5)函数的概念,几种常见函数的图象及性质;(6)统计和概率。几何知识归纳为:(1)图形的初步认识;(2)三角形的概念、分类、定理及其应用;(3)四边形的概念、定理及其应用;(4)图形与变换;(5)相似形的概念、定理及其应用;(6)解直角三角形;(7)圆的概念、定理及其应用;
3.试题模式:以2008年西宁市数学第一次模拟考试试卷为基本样式。
4.难度的比例分配:试卷满分为120分,简单题型占60%,中等题型占30%,难度题占10%。
中考要求
中考要面向全体考生,以数与代数、空间与图形、统计与概率、实践与综合应用内容为依据,关注学生对数学的基本认识,关注学生的数学活动过程、关注学生的数学思考、关注学生解决问题的能力、关注学生对数学与现实生活以及与其他学科知识之间联系的认识等。充分体现新课标理念,力求客观、公正、全面、准确地评价学生数学学习状况。
命题规律
1.重视数学基础知识的认识和基本技能、基本思想的考查。
2.重视数学思想和方法的考查。
3.重视实践能力和创新意识的考查。
复习的基本原则
以《课程标准》和数学教材为依据,立足于掌握和巩固基本知识和基本技能,强化主干知识,注重教材的重点和难点,加强对薄弱环节的复习,及时查缺补漏,注重知识应用能力,培养灵活及综合解决问题的能力。
复习中的几点建议
1.注重课本知识,查漏补缺。全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
2.注重课堂学习,提高效率。在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
3.夯实基础知识,学会思考。在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
4.注意知识的迁移,学会融会贯通。课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
5.复习形成梯度,选择典型习题。如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
6.重视基础知识,注重解题方法。基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握。
7.形成数学思想,学会运用。数学思想的进一步形成和继续培养是十分重要的,因为它的应用是十分广泛的。比如方程思想、特殊和一般的思想、数形结合的思想,函数思想、分类讨论思想、化归与转化的思想等,我们要加深对这些思想的深刻理解,目前要多做一些相关内容的题目;从近几年中考情况看,最后的“压轴题”往往与此类题型有关,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换。
④ 初中数学教学设计的常用模式有哪些分别有什么特点
初中数学课堂教学设计应注意的几个环节
数学课堂教学设计直接与教师的教学质量有关,同时一节课能否激发学生的学习兴趣,关键看你的课堂设计是否具有科学性,现根据我的教学实践来看,应着重抓住以下几个环节。
一、注意处理好课堂教学内容在课堂教学过程中,教师的主要任务是处理好教材,学生要使学生掌握本节课的教学内容,灵活运用所学知识解决实际问题,把数学运用于实践生活中去,教学内容主要体现在教材中,所以教师在教学时处理好教材是关键,如果处理得好,可以达到事半功倍的效果。首先讲练结合要适度。要做到这一点,教师要深入吃透教材,设计的问题不要太深太难,学生不易回答,容易挫伤学生的学习积极性,所以教师在课堂上要做到,由浅入深,层层深入,准确把握知识目的能力目标。讲课时要做到把数学中的概念,原理公理,描述准确,不能含糊,举例要真实可靠,重点要突出,难点要突破。课堂教学内容要适度安排的内容,不能过多或过少,切忌贪多求全,偏深偏难,其次,要注意知识间的内在联系,学生学到的知识不是零碎的而应是形成结构的,要使学生的知识能迁移。教师在处理好教材时,其中也包括把握好知识点的结点和它们之间的联系,最后教学节奏要和谐,作为教师要想使自己教的课具有特色,具有魅力,必须会调节教学节奏和师生情感,为课堂教学创造一种和谐的节奏和气氛,温馨和谐的教学气氛会促成良好的教学效果。
二、注意合理分配好教学时间为了保证圆满完成教学任务,一节课各个环节所用时间分配必须合理,分配时间,要提出主攻方向。哪些是重点、非重点,难点、非难点,哪些地方该练习,哪些环节该占用多少时间,教师要做到心中有数,有的放矢,明确教学任务的重点和主次,才能合理分配教学时间,其次要明确教与学的关系,恰当分配,讲练时间要合理,应少讲多练,突出以学生为主体,而教师起主导作用,合理分配教学时间,还要考虑符合教学实际,课堂教学时间结构要根据教学内容的要求,教学环境的变化,学生的学习情况作一定的调整。
三、灵活运用教学方法为了进一步实现教学目的,突出重难点,必须选取合适的教学方法。只有教学方法选好了,教学效果才能达到事半功倍,教学过程是一个复杂的过程,应采用多种多样的教学方法、教学模式与之相适应,然而如何选择教学方法呢?首先要根据教学内容的情况选择合适的教学方法,如课的难易程度。其次要根据学生的学习成绩和个性心理特点来选择教学方法,如学生的基础知识,如何学生分析问题和解决问题的能力怎样,学生之间的学习水平差异大小等情况。考虑学生思维活动规律,要根据学生课堂思维变化规律来选择教学方法,最后要根据教学情境和教师教风,选择教学方法。
影响课堂教学的因素和条件是不一样的,所以选择教学方法也要从教学条件和环境出发,有的课可以用一种方法,有的课可以综合运用几种方法,总之,无论采用哪一种方法,都要能调动学生的学习激情和积极性,同时学生的思维得到持续地健康发展。
具体的范文模板
链接:https://pan..com/s/1vK_bLKmsNy78wcE2DOC2AA
⑤ 初中数学内容的核心概念有哪些
在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。
主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。
建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;
想象出物体的方位和相互之间的位置关系;
描述图形的运动和变化;
依据语言的描述画出图形等。
主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;
了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;
通过数据分析体验随机性
一方面对于同样的事情每次收集到的数据可能不同,
另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。
主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
推理能力的发展应贯穿于整个数学学习过程中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;
演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。
这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
有两个方面的含义,
一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;
另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己发现和提出问题是创新的基础;
独立思考、学会思考是创新的核心;
归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
⑥ 初中数学都学哪些内容
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.
⑦ 初中数学知识有哪些
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
⑧ 初中数学内容有哪些
初中数学内容主要有《有理数》作为初中数学的第一章内容,包括有理数的加减有理数的乘除有理数的乘方,有理数的幂的运算以及有理数的混合运算。初中数学里面还学习了一元一次方程、一元一次方程组、分式方程、整式、圆、一次函数,二次函数,等等,这些内容
⑨ 初中数学内容有什么涉及哪些公式
初中数学主要包含代数和几何两部分。
1、代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
2、几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。
(9)初中数学课的类型有哪些内容扩展阅读:
1、代数部分主要包含:
实数,代数式(整式,二次根式),方程(一元一次方程,二元一次方程组,一元二次方程,分式方程),不等式,函数(正比例函数,一次函数,反比例函数,二次函数)。
2、几何部分主要包含:
几何初步(线以角,平行线),三角形(三角形认识及性质,直角三角形,等腰三角形,全等三角形,相似三角形,锐角三角函数),四边形(平行四边形,矩形,菱形,正方形),圆,立体图形基础,图形三大变化(平移,旋转,对称)。
如果觉得小蜜书说的实用 就戳戳大拇指鼓励我吧!
⑩ 初中数学都学哪些内容
怎样学好初中数学?需要使用什么方式哪?
数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?
知识点
所以想要学好数学,需要多方面的努力,这与很多的因素有关,首先可以找到属于自己的学习方式,然后了解这个科目的特点,使自己有一定的了解之后,开始进行学习,相信通过本篇文章你应该知道怎样学好初中数学了吧!