㈠ 考研初试中,考数学和不考数学的比例大概是多少或者你周围的人同校的研友这个比例大概是多少
考研只有部分专业不考数学,英语和政治是公共课,必考
考研不考数学的专业汇总
一、不考数学的专业
法律硕士、工商管理硕士、汉语言文学、历史、哲学、新闻学、传播学、播音主持、采访编辑、艺术类、图书管理学、劳动与社会保障、法学、社会学、服装设计、工业设计(艺术类)。
法律硕士可归为既是精神满足型又日物质实现型的专业,可以为社会弱势群体代言,又可以得到丰厚的物质回报,而且广阔的就业前景正在吸引越来越多的考生报考,竞争是非常激烈的。
工商管理硕士是市场经济的产物,培养的是高质量、处于领导地位的职业工商管理人才,使他们掌握生产、财务、金融、营销、经济法规、国际商务等多学科知识和管理技能,有战略规划的眼光和敏锐洞察力,受到了考生的青睐,但昂贵的学费也是让很多考生放弃的原因。
二、视学校而定的专业
装潢设计、医学类、生物科学、行政管理、心理学(在应用心理学中,需要考统计学)、英语(科技英语有的学校要考)、园林设计(主要看农业学校而定)。
近年来心理学专业的考生无疑是越来越多,竞争也越来越激烈,心理学专业初试涵盖了普通心理学、发展与教育心理学、实验心理学、心理统计与测量等学科。
英语专业是很多人想要选择的专业,但考研难度大,关键还有对第二外语的要求,这就让很多自认为英语好的考生望而却步,在这里提醒考研想要报考英语专业的考生在复习的初期就要重视第二外语的学习,语言类的学习是一个长期准备的过程。
通过对不考数学的专业的介绍,相信很多数学基础不好的考研学子都在想自己报考的专业为什么要考数学呢,实际上这些都是与所报考专业的需求联系的,未来的学习需要数学,那考研初试就一定会考查的。数学的学习需要长期的准备付出才能显示出复习效果的,所以考研的学子一定要尽早投入复习
㈡ 考研考数学二难吗对于中等程度的考生大概能考多少分难点在哪里
链接:
李永乐王式安数学团队,通过近阶段大家复习情况及出现的问题,为考生冲刺阶段复习提分指点迷津。冲刺阶段,目的总结所做题目中存在的问题与不足,对照考纲查缺补漏,提高实战素养,制定做题策略,规划草稿纸,特别是实战心理素质。
㈢ 考研数学一140分以上每年能占考数学一考生的百分之多少
不多,没那么好得,虽然复习的时候感觉全会,但是近两年的题在考场上做的很紧张
㈣ 高等数学在考研数学一的所占的比例是多少
高等数学在考研数学一占百分之五十六。
考研报不报班,主要看你自己的情况,是否可以通过视频资料等自己解决难题,是否可以有自制力自主学习。
仅就高数来说,陈文登讲的最好,毫无疑问;张宇的解题方法很值得一看,尤其是泰勒公式那一部分;李永乐主要讲线代,全书的高数部分是李正元所编,李正元讲的很全,但与陈文登相比系统性不够,方法也大多常规。
如果有时间的话这几个老师的课你都可以先听一听,看更合适谁的风格。
(4)考研考数学一的考生有多少扩展阅读:
试卷结构
选择题:8题(每题4分);
填空题:6题(每题4分);
解答题:9题(每题10分左右);
满分150分,考试时间3小时。
2. 考试科目及分值
高等数学:84分,占56%(4道选择题,4道填空题,5道大题);
线性代数:33分,占22%(2道选择题,1道填空题,2道大题);
概率论与数理统计:33分,占22%(2道选择题,1道填空题,2道大题)。
注意:数学二不考概率论与数理统计,这一科的分值和试题全加到高等数学中。
3. 考试特点
①总分150分,在公共课中所占分值大,全国平均分在70左右,分数之间差距较大;
②注重基础,遵循考试大纲出题,考查公式定理,知识点固定;
③注重高质量的考点训练与题型总结。
参考链接:网络考研数学
㈤ 考研数学一般能考多少分
考研数学总分150分,按不同的学科,有数学一、数学二和数学三三种试题,难度依次递减,一般好的学校要求最低分达到85分。
考研数学的小技巧:
1、考研数学要复习好,首要要做的就是按照大纲对基础的要求,准确把握基本概念、方法和定量。数学是一门演绎的科学,靠侥幸押题是行不通的。
2、考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。所以考研数学要想得高分,先要研究大纲。
考研的流程
1、选定报考单位、报考专业和初试科目。这个不是规定的程序,但是是最重要的前提工作,只有这一项确定了,其他准备工作才有明确方向。
2、网上报名与缴费。网上报名时间为10月中下旬。
3、现场确认。根据报考点的公告,携带本人有效证件和规定材料到指定地点进行现场确认,并采集个人电子照片。
4、打印准考证。按照报考点要求在规定时间内打印准考证。
5、初试。初试一般安排在12月份最后一个周末进行。
6、复试、体检、资格复审。复试一般为次年的3-4月份。如果没有满足初试分数线,则需要自己关注调剂信息进行调剂。
7、录取与通知书发放。录取结果在复试后一周内会公示,录取通知书一般在次年6月份发放。
㈥ 考研数学一 一般考多少分啊
好像这个没有人统计过,努力的人考的分数一般比较高,呵呵~
名师赵达夫说:
感觉今年的数学试卷的难度和往年基本上类同,而数学分数始终在近五年数学试卷满分150分,从2003年开始到2008年,这六年数学理工类考生,报考工学的大量考生及理工类考生报考A类地区,我们国家分A类地区、B类地区、C类地区,A类地区就是科学教育经济高度发达的省市,像北京、天津、上海、浙江、江苏、广东,我们就预测A类地区。A类地区我们近五年工学数学最低录取线稳定在62分到66分,没有超过66分,就是62至66。经济类考生稳定在76到81。由于我们的考试大纲没有变化,而考试的题完全符合大纲的要求,命题组的老师又比较有水平,所以数学的分数预测分数线,我预测今年跟往年基本上持平,工学数学的分数线基本稳定在66分正负加2分,是这样一个分数线。经济类考生稳定在78分正负加2分到3分,是这样一个分数线。
㈦ 数学专业的学生考研考数学几
只有选择考非数学专业的才会考数一、二、三。考数学的研的话,基本就是两门专业课,数学分析和高等代数。
数学源自于古希腊语μάθημα(máthēma),是研究数量、结构、变化、空间、信息等相关概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学作为人类对事物的抽象结构与模式进行严格描述、推导的一种通用方式,可以应用于现实世界的任何问题。
数学的基本要素是:逻辑和直观、分析和推理、一般和特殊。
业务培养:
业务培养目标:本专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。
业务培养要求:要求学生系统学习数学和应用数学的基本理论和方法,受到严格的数学思维训练,掌握计算机的原理和运用手段,并通过教育理论课程和教学实践环节,形成良好的教师素养,培养从事数学教学基本能力和数学教育研究、数学教学研究、数学科学研究、数学实际应用等基本能力。
㈧ 考研数学考的是什么内容
《数学》网络网盘免费下载
链接: https://pan..com/s/1B9X8x_q8Nbfez8IadsjyZw 提取码: 2wnd
考研时的知识点基本上都是高数、线代与概率论的知识点。一般统考不会超过课本知识,但是难度比课本习题难度大很多。一般可以参考每年的数学考研大纲。数学一考研数学内容:
高等数学
一、函数、极限、连续
考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数
二、一元函数微分学
考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法;线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数。
一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径
四、向量代数和空间解析几何
考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念
平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程
五、多元函数微分学
考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用
六、多元函数积分学
考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用
七、无穷级数
考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域
幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数
八、常微分方程
考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用
线性代数
一、行列式
考试内容行列式的概念和基本性质行列式按行(列)展开定理
二、矩阵
考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算
三、向量
考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质
四、线性方程组
考试内容:线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解
五、矩阵的特征值和特征向量
考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵
六、二次型
考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性
概率论与数理统计
一、随机事件和概率
考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验
二、随机变量及其分布
考试内容:随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
三、多维随机变量及其分布
考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布
四、随机变量的数字特征
考试内容:随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质
五、大数定律和中心极限定理
考试内容:切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理
六、数理统计的基本概念
考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布
七、参数估计
考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计
八、假设检验
考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验