导航:首页 > 数字科学 > 数学题画重点怎么画

数学题画重点怎么画

发布时间:2022-06-28 15:01:27

数学题,这个怎么画,求详细过程

用圆规,首先一点定于a点,然后画圆(圆的半径要大于ab之间一半的距离),然后保持半径再以b为圆心画一个圆,两个圆会有两个交点,连在一起不就平分圆弧了吗

② 用趣味数学题画成一幅画应该怎么画呢

素描是绘画的基础,绘画的骨骼;也是最节制、最需要理智来协助的艺术。初学绘画的人一定要先学素描,素描画得好的人,油画自然画得好。素描的起源,普遍都是以文艺复兴开始,事实上希腊的瓶绘、雕塑都有良好的素描基础。初期的素描是视为绘画的底稿,例如作壁画先要有构想的草稿,然后有素描的底稿,同时也要有手、脸部分精密素描图。作壁画习惯上是不看模特儿写生的,完全要靠事先准备的习作素描和画家的记忆。近代素描,已脱离了原来的底稿和习作的地位,可以成为艺术品来欣赏。画素描的态度不只培养描写力,同时也培养造型的能力,最后仅仅是素描也可视为作品来欣赏。相反的单看油画作品就可知道作者在素描上的造诣如何。因此,素描是绘画的基础,也是绘画的骨骼,是初学画的人无论如何要先认真学素描。素描在严格的解释上,只有单色的黑与白,但如加上淡彩或颜色,仍可认作素描。素描的表现方法分成:一、以描画材料来看可分成木炭素描、铅笔素描、炭精素描、钢笔素描、银笔素描、毛笔素描等。二、以所画的题材可分成石膏像素描,风景素描,静物素描、人体素描、幻想素描。三、依素描的目的又可分成作为构想的素描、用作画稿的素描、速写、作品、习作。
由木炭,铅笔,钢笔等,以线条来画出物象明暗的单色画,称作素描。单色水彩和单色油画也可以算作素描;中国传统的白描和水墨画也可以称之为素描。通常讲的素描多元化指铅笔画和炭笔画。素描是一切绘画的基础,这是研究绘画艺术所必须经过的一个阶段。素描通常采用可于平面留下痕迹的方法:如,炭笔,钢笔,画笔,墨水,及纸张等。轮廓和线条是素描的一般称谓。素描具备了自然律动感。不同的笔触营造出不同的线条及横切关系和节奏、主动与被动的周围环境、平面、体积、色调、及质感。
一、素描从目的和功能上说;一般可分为创作素描和习作素描两大类。
二、写生素描在表现内容上分为静物、动物、风景、人像及人体素描等。
三、素描从绘画传统的角度说,素描又可分为中国写意传统的素描和西方写实传统的素描两种。
四、素描从作画时间概念上说,素描可分为长期素描、速写、默写等。
五、 素描从使用工具上分为铅笔、炭笔、钢笔、毛笔、水墨、粉笔、纸笔或两种工具穿插使用的素描。
(1)铅笔素描 铅笔素描常是素描练习的开始,不论是精细素描或是速写,都可以由易于修改的铅笔开始。并练习运用不同标志的铅笔,铅笔标志B表示黑度,也就是笔芯里炭黑的含量,前面标志的数字越大,颜色越黑,铅芯的质感也越软,疏松。可用来画较暗的部分。H表示硬度,前面标志的数字越大,质地越硬,可用来画较光的部分。
铅笔素描的画纸可选用纸面较粗的画纸,如150磅或200磅的模造纸,以软质橡皮、可塑橡皮或高光橡皮为佳。

常见的素描习作可以静物写生、风景写生来作练习。初学者最好不要碳铅结合,因为碳笔亚光,而铅笔带有油性。

③ 数学题 应该有怎样的思维构图

一、数学思维导图学什么:
1、是什么:首先将数学的基本概念记住,理清每一个概念的定义是什么,然后把概念变成自己理解的符号在思维导图中做出图象。
2、怎么做:每个问题都有它的解题方法,思路,可以将这种思路划成步骤写在数学思维导图中。
3、有什么用:用数学思维导图记住知识的条件,然后记住什么时候使用,有什么用。
二、搞好数学的记忆问题:
数学思维导图是记忆数学最好的方式,主要分为以下三步:
第一步,先用大脑在看过书上的知识之后,通过回忆在脑海中绘制出数学结构图。
第二步,绘制数学思维导图,研究关键词、路线等几个性质,在思维导图软件中将导图绘制出来。
第三步,将数学思维导图和大脑建立连接,就是每次看见这个知识,就在大脑中出这个知识的思维导图,就成为他们之间的链接。
三、通过数学思维导图学习的模式
1、预习:课前通过数学思维导图了解学习内容是什么,重点是什么,哪些是要进行区分的。
2、听课:在听课的过程中,不断与预习时所做数学思维导图对照,将遗漏的补上,把老师所讲知识内容进行总结。
3、做作业:做之前看下自己上课时候弥补后的思维导图,然后解题目,不会时再去学习所对应的思维导图。
4、复习:重新对自己绘制过的思维导图进行梳理,然后组成更大的思维导图。最好能够把书本、参考书,做过的好的题目和知识都在思维导图上体现出来。
数学思维导图是一个很好的对数学知识的进行总结的工具,利用数学思维导图可以达到提高数学能力,学会学习的目标。

④ 有些数学题目需要画图,怎么才能画好图呢

下一个几何画板

你家有 画图 这个工具吗
你可以用画图画一个然后保存时用JPG格式

⑤ 我想提问数学题 有图 但我不知道怎么画

用电脑程序附件——画图工具
点左下角【开始】——【所有程序】——【附件】——【画图】
画完了保存,再上传
如果是您不会画那个题的图,我们看不到也没办法,或许您可以用摄像头照下来上传

⑥ 数学思维导图怎么画

数学思维导图的构建模式是先确定中心主题,引出子主题,再将子主题划分为不同层次。具体操作步骤如下。

1、使用最简单的语言确定要绘制的数学主题,以“角度测量”为例,如下图所示。

注意事项:

上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。

⑦ 小学数学应用题数量分析画图怎么画

小学数学应用题数量分析画图是以线段图为主。具体标出每一段的量。

⑧ 初三数学画图题技巧

以r长为半径画圆,在半径为r的圆上依次截取等于r的弦,就可以将圆六等份,顺次连接各分点即可得到半径为r的正六边形(我也是初三的
我数学老差了呵呵)

⑨ 初二数学画图题,怎么画

第5题 画MN的垂直平分线与∠HOF的角平分线的交点即为所求点
第6题 AB都为居民区吧,作AB的垂直平分线与公路的交点即为所求点
第7题 找到A点关于直线的对称点A`,连接A`B,与直线交点即为所求点M
或找到B点关于直线的对称点B`,连接B`A,与直线交点即为所求点M

⑩ 做数学题的方法和技巧

中小学数学,还包括思维数学,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?文都教育建议家长们,培养孩子从小就习惯用这些思维和方法来解题!

形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出

乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学、中学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地

推理。

对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

解题技巧

选择题答题攻略

1、剔除法

利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法

对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推破解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法

将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法

从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

填空题答题攻略

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法

当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

3、数形结合法

借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

4、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

阅读全文

与数学题画重点怎么画相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071