㈠ 代数是什么意思
代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。
初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
(1)代数学中研究什么代数扩展阅读:
代数的起源:
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。
代数的起源可以追溯到古巴比伦的时代,当时的人们发展出了较之前更进步的算术系统,使其能以代数的方法来做计算。经由此系统地被使用,他们能够列出含有未知数的方程并求解,这些问题在今日一般是使用线性方程、二次方程和不定线性方程等方法来解答的。
相对地,这一时期大多数的埃及人及西元前1世纪大多数的印度、希腊和中国等数学家则一般是以几何方法来解答此类问题的,如在兰德数学纸草书、绳法经、几何原本及九章算术等书中所描述的一般。希腊在几何上的工作,以几何原本为其经典,提供了一个将解特定问题解答的公式广义化成描述及解答代数方程之更一般的系统之架构。
㈡ 代数学和高等代数有什么区别
代数学:是研究数、数量、关系与结构的数学分支。代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步,多项式代数。代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段的代数,就叫做高等代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
㈢ 代数到底是什么
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。初等代数是更古老的算术的推广和发展。
简介
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。这种“代数学”是在十六世纪才发展起来的。
溯源
如果我们对代数符号不是要求像现在这样简练,那么,代数学的产生可上溯到更早的年代。
西方人将公元前三世纪古希腊数学家丢番图看作是代数学的鼻祖,而真正创立代数的则是古阿拉伯帝国时期的伟大数学家默罕默德·伊本·穆萨(我国称为“花刺子密”,生卒约为公元780-850年)。而在中国,用文字来表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。
组成
·初等代数
基本内容
三种数——有理数、无理数、复数
三种式——整式、分式、根式
中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。
规则
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。
初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。
(1)a-b=0,a=b
(2)a+b=0,a=-b,b=-a
(3)a*b=0,a=0 或 b=0
(4)(a-b) (a-b)=0,a=b
·高等代数
研究对象
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步 、多项式代数。
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。 集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。
与线性代数的区别和联系
很多人把高等代数和线性代数混为一谈,不明白其中的区别。
高等代数是大学数学专业开设的专业课,线性代数是大学中除了数学专业以外的理科,工科和部分医科专业开设的课程
解方程
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。
代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。
有了有理数,初等代数能解决的问题就大大的扩充了,但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
数学家们说不用把复数再进行扩展。这就是代数里的一个着名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。
代数学
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要着作的名称。该着作名为“ilm al-jabr wa'1 muqabalah”,原意是“还原与对消的科学”。这本书传到欧洲后,简译为algebra。清初曾传入中国两卷无作者的代数学书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。
㈣ 代数是什么意思
你好,你问的代数是什么意思?
代数是指研究数量关系的学科。其中
线性代数,是研究如何解线性方程组及有关的问题,
高等代数,是指研究方程式的求根问题。
㈤ 在数学里什么是代数
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。
代数中心内容:解方程
三种数——有理数、无理数、复数
三种式——整式、分式、根式
中心内容是方程——整式方程、分式方程、根式方程和方程组。
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方,底数不变,指数相乘;积的乘方等于乘方的积。
㈥ 什么是代数
代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
代数是数学的一个分支。传统的代数用有字符 (变量) 的表达式进行算术运算,字符代表未知数或未定数。如果不包括除法 (用整数除除外),则每一个表达式都是一个含有理系数的多项式。例如: 1/2 xy +1/4z-3x+2/3. 一个代数方程式 (参见EQUATION)是通过使多项式等于零来表示对变量所加的条件。
如果只有一个变量,那么满足这一方程式的将是一定数量的实数或复数——它的根。一个代数数是某一方程式的根。代数数的理论——伽罗瓦理论是数学中最令人满意的分支之一。建立这个理论的伽罗瓦(Evariste Galois,1811-32)在21岁时死于决斗中。他证明了不可能有解五次方程的代数公式。用他的方法也证明了用直尺和圆规不能解决某些着名的几何问题(立方加倍,三等分一个角)。多于一个变量的代数方程理论属于代数几何学,抽象代数学处理广义的数学结构,它们与算术运算有类似之处。参见,如: 布尔代数(BOOLEAN ALGEBRA);群 (GRO-UPS);矩阵(MATRICES);四元数(QUA-TERNIONS );向量(VECTORS)。这些结构以公理 (见公理法 AXIOMATICMETHOD) 为特征。特别重要的是结合律和交换律。代数方法使问题的求解简化为符号表达式的操作,已渗入数学的各分支。
㈦ 什么是数学的代数
最简单的说法就是用字母带替数
详解
代数
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数。
代数是由算术演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧。那么,这种“代数学”是在十六世纪才发展起来的。
如果我们对代数符号不是要求象现在这样简练,那么,代数学的产生可上溯到更早的年代。西方人将公元前三世纪古希腊数学家刁藩都看作是代数学的鼻祖。而在中国,用文字来表达的代数问题出现的就更早了。
“代数”作为一个数学专有名词、代表一门数学分支在我国正式使用,最早是在1859年。那年,清代数学家里李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》。当然,代数的内容和方法,我国古代早就产生了,比如《九章算术》中就有方程问题。
初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上。它的研究方法是高度计算性的。
要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程。所以初等代数的一个重要内容就是代数式。由于事物中的数量关系的不同,大体上初等代数形成了整式、分式和根式这三大类代数式。代数式是数的化身,因而在代数中,它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算。通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算。
在初等代数的产生和发展的过程中,通过解方程的研究,也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零。这是初等代数的又一重要内容,就是数的概念的扩充。
有了有理数,初等代数能解决的问题就大大的扩充了。但是,有些方程在有理数范围内仍然没有解。于是,数的概念在一次扩充到了实数,进而又进一步扩充到了复数。
那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了。这就是代数里的一个着名的定理—代数基本定理。这个定理简单地说就是n次方程有n个根。1742年12月15日瑞士数学家欧拉曾在一封信中明确地做了陈述,后来另一个数学家、德国的高斯在1799年给出了严格的证明。
把上面分析过的内容综合起来,组成初等代数的基本内容就是:
三种数——有理数、无理数、复数
三种式——整式、分式、根式
中心内容是方程——整式方程、分式方程、根式方程和方程组。
初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同。比如,严格的说,数的概念、排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的……。这些都只是历史上形成的一种编排方法。
初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解。代数运算的特点是只进行有限次的运算。全部初等代数总起来有十条规则。这是学习初等代数需要理解并掌握的要点。
这十条规则是:
五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律;
两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。
㈧ 数学中什么是代数
最简单的说法就是用字母带替数
如:已知x=2,y=-4时,代数式ax*x*x+0.5by+5=0,求当x=-4,y=-0.5时,代数式3ax-24by*y*y+4996的值
或者:ax=1,by-2=0,a=3,b=4求x,y......之类的,其中a,b就是代数,而要求的x,y则是未知数
但大多数情况下,代数的值不会告诉你,你所求的未知数要用这些代数表述。
㈨ 代数学的介绍
代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。代数学是数学中最重要的、基础的分支之一。代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。在这个过程中,代数学的研究对象和研究方法发生了重大的变化。代数学可分为初等代数学和抽象代数学两部分。初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。
㈩ 什么是代数
代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。
初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
(10)代数学中研究什么代数扩展阅读
一、代数学的起源
代数学英文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要着作的名称。该着作名为“ilm al-jabr wa'1 muqabalah”,原意是“还原与对消的科学”。
这本书传到欧洲后,简译为algebra。清初曾传入中国两卷无作者的代数学书,被译为《阿尔热巴拉新法》,后改译为《代数学》。
二、代数的介绍
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。
代数(algebra)是由算术(arithmetic)演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。
比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的代数方程的技巧。这种“代数学”是在十六世纪才发展起来的。
参考资料来源:网络-代数