1. 中国对数学史的影响
中国数学史
(一) 中国的起源与早期发展
据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
1、 算筹
算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。
用算筹记数,有纵、横两种方式:
表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。
在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。着名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
1、中国数学体系的形成与奠基
这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专着是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。
西汉末年〔公元前一世纪〕编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学着作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。
《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典着作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。
魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰着《海岛算经》,发扬了古代勾股测量术----重差术。
南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作。约于公元四-五世纪成书的《孙子算经》给出“物不知数”问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的“百鸡问题”引出三个未知数的不定方程组问题。
公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其着作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。
同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。
2、中国数学教育制度的建立
隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。
隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》〔包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》〕,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。
由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。
唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。
3、中国数学发展的高峰
唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批着名的数学家和数学着作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:
公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)
公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。
公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。
公元1248年,李冶(李治,公元1192一1279年)着的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的着作,这在数学史上是一项杰出的成果。在《测圆海镜·序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。
公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。
公元1303年,元代朱世杰(生卒年代不详)着《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。
公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。
4、中国数学的衰落与日用数学的发展
这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。
明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》〔1592〕问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。
5、西方初等数学的传入与中西合璧
十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。
十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷〔1607〕,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的着作有邓玉函编译的《大测》〔2卷,1631〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷,1631〕。在徐光启主持编译的《崇祯历书》〔137卷,1629-1633〕中,介绍了有关圆椎曲线的数学知识。
入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学“必有精理”,对古代名着做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他“御定”的《数理精蕴》〔53卷,1723〕,是一部比较全面的初等数学书,对当时的数学研究有一定影响。
6、传统数学的整理与复兴
乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学着作有《算经十书》和宋元时期的着作,为保存濒于湮没的数学典籍做出重要贡献。
在研究传统数学时,许多数学家还有发明创造,例如有“谈天三友”之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》〔约1859〕中得到三角自乘垛求和公式,现在称之为“李善兰恒等式”。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷〔1795-1810〕,开数学史研究之先河。
7、西方数学再次东进
1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设“算学”,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和着作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷〔1857〕,使中国有了完整的《几何原本》中译本;《代数学》13卷〔1859〕;《代微积拾级》18卷〔1859〕。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷〔1872〕,《微积溯源》8卷〔1874〕,《决疑数学》10卷〔1880〕等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。
8、中国现代数学的建立
这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。
中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来〔1915年转留法〕,1919年留日的苏步青等人。他们中的多数回国后成为着名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学〔今南京大学〕和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵〔1927〕、陈省身〔1934〕、华罗庚〔1936〕、许宝骙〔1936〕等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素〔1920〕,美国的伯克霍夫〔1934〕、奥斯古德〔1934〕、维纳〔1935〕,法国的阿达马〔1936〕等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝骙在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊〔1952年改为《数学学报》〕,1951年10月《中国数学杂志》复刊〔1953年改为《数学通报》〕。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。
建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》〔1953〕、苏步青的《射影曲线概论》〔1954〕、陈建功的《直角函数级数的和》〔1954〕和李俨的《中算史论丛》5集〔1954-1955〕等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。
60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。
1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
9、中国数学的特点
(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。
10、中国数学对世界的影响
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。
中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
2. 数学史对数学教育意义有什么意义
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;
在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。
通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
(2)对数学史的认识从什么什么起扩展阅读:
数学史的研究范围:
按研究的范围又可分为内史和外史:
1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;
2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。
从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
3. 数学的由来是
数学的由来:
1、从人类的角度:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
2、从时间的角度:
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
数学的发展史:
1、从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”
2、直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”
3、在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
4、从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
5、现代数学已包括多个分支,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。
4. 学习数学史的意义
学习数学史,有其科学意义、文化意义和教育意义。
1、数学史的科学意义:
数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,数学传统与数学史材料可以在现实的数学研究中获得发展。
2、数学史的文化意义
数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
3、数学史的教育意义
数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。
因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
(4)对数学史的认识从什么什么起扩展阅读
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。
作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
5. 试述对数,起源的思想原理及其过程
对数的起源 对数产生于以加减运算代替乘除运算的探索中.
以加(减)代乘(除)的想法早就存在了.一个简单的三位数乘法(例如265×438),一般需要四次运算才能得出结果,但同样数字的加法却只需一次运算.涉及的数字越大,则乘(或除)所需要的运算次数比加(或减)所需的运算次数相差得越多.因此,在6世纪以前,就曾有人作尝试,试图实现以加(减)代乘(除).但由于压力不大,并不感到非如此不可,因此未能达到目的.
16世纪中叶,由于天文和航海而引起的大数计算日益激增,这种计算不仅花去了人们大量的精力,而且难以精确,于是,以加(减)代乘(除)的设想再次被提出,并被作为必须解决的问题加以考虑了.
起初,曾采用以下两个公式来实现乘除向加减的转化:
但由于它们都需要通过另一种运算(三角或平方)来实现转化,并不真正地提高效率,所以很快就被搁置不用了.
能不能使乘(除)直接向加(减)转化呢?能!1484年,法国数学家舒开(Chuquet,?—1500)通过把等差数列与等比数列,如:
0,1,2,3,4,… 等差 1,2,4,8,16,… 等比
或0,1,2,3,4,… 等差 1,3,9,27,81,… 等比
比较发现:等比数列中任何两项的积,可以用与这两项序号对应的等差数列的和来表示(注:这一点最早由阿基米德发现).由于当时舒开并不力图解决这个问题,因此他仅提出了这个发现,而没加以深入地研究.
半个世纪后,同样的事实再次被德国数学家史提非提出.史提非以如下一组数列为例指出:“等比数列中数的乘、除、乘方、开方可以转化为等差数列中数的加、减、乘、除来实现.”如4×8,因为4和8对应的等差数列的数分别是2和3,而2+3=5,所以4×8的结果是5所对应的等比数中的数32.又如82,因为8对应的等差数列中的数是3,3×2=6,所以82的结果是6所对应的等比数列中的数64.就这样,史提非轻巧地实现了运算的转化,并且他意识到:“只要把这个思想进一步发挥,那么必定能得出关于数的性质的全新的论述.”遗憾的是史提非后来再也没进行深入的研究,他放弃了进一步发挥思想的权利,因而也就失去了对数发明者的资格.布尔基与耐普尔数学史册上的对数发明者是两个人:英国的约翰·耐普尔(John Naeipr,1550-1617)和瑞士的乔伯斯特·布尔基(Jobst Bürgi,1552-1632).
布尔基原是个钟表技师,1603年被选为布拉格宫庭技师后,开始与着名的天文学家开普勒接触,了解到天文学计算的一些具体情况.他体察天文学家的辛劳,并决定为他们提供简便的计算方法.
布尔基所提出的简便计算方法就是一张实用的对数表.从原则上说,史提非已经解决了将乘(除)运算转为加(减)运算的途径.但是史提非所给出的两个数列中的数字十分有限,它不能付之于实用,实用的对数表必须包括所有要乘的数在内.
为了做到这一点,布尔基采取尽可能细密地列出等比数列的办法.他给出的等比数列相当于: 1,1.0001,(1.0001)2,(1.0001)3,…,(1.0001)104,…
其相应的等差数列是:0,0.0001,0.0002,0.0003,…,1,…
这里,等差数列中的1,对应于等比数列中的(1.0001)104.就是说,布尔基在造表时,把对数的底取为(1.0001)104=2.71814593…,与自然对数的底e=2.718281828…相差不远.但需要的指出是,无论是布尔基还是后面要讲到的耐普尔,他们都没有关于对数“底”的观念.因为他们都不是从ax=N的关系出发来定义对数x=logaN的.
耐普尔原是苏格兰的贵族.生于苏格兰的爱丁堡,十二岁进入圣安德鲁斯大学的斯帕希杰尔学院学习.十六岁大学尚未毕业时又到欧洲大陆旅行和游学,丰富了自己的学识.耐普尔虽不是专业数学家,但酷爱数学,他在一个需要改革计算技术的时代里尽心尽力.正如他所说:“我总是尽量使自己的精力和才能去摆脱麻烦而单调的计算,因为这种令人厌烦的计算常使学习者望而生畏.”耐普尔一生先后为改进计算得出了球面三角中的“耐普尔比拟式”、“耐普尔圆部法则”以及作乘除用的“耐普尔算筹”,而为制作对数表他花了整整20年时间.
1614年,耐普尔发表了他的《关于奇妙的对数表的说明》一书,书中不仅提出数学史上的第一张对数表(布尔基的对数表发表于1620年),而且阐述了这个发明的思想过程.他说:假定有两个质点P和Q,分别沿着线段AZ和射线A'Z'以同样的初速运动,其中Q保持初速不变,而P作减速运动,其速度与这个点离Z的距离成正比,现在,如果当P位于某点B时,Q位于B',那么,A'B'就是BZ的对数!同样的A'C'是CZ的对数,等等(图 1).建立了这个模型以后,耐普尔通过代入具体的数字得出BZ、CZ、DZ、EZ、FZ…一系列数值为:
,…
以及作为它们的对数的A'B',A'C',A'D',A'E',A'F',…一系列数值为: 1,2,3,4,5,…显然,这也是一组相互对应的等比数列和等差数列,因此耐普尔实质是把等差数列中的数定义为对应的等比数列中的数的对数!这说明,耐普尔借助于质点运动建立起来的对数概念,其原理仍不外乎等比数列与等差数列关系的合理运用.
6. 对数的起源
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数.在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔。纳皮尔当时是一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。
7. 数学史概论读后感800字
数学是在历史中形成的, 只有懂得历史, 才能深刻地理解数学。长期以来, 数学史在教学中没有得到应有的重视,教材本身反映的比较少, 供教师参考的关于渗透数学史教育文献也比较少, 大多数数学老师把有关的数学史知识一带而过, 或干脆不讲, 这就大大忽视了数学史对数学教学的促进作用。如果不把数学史融入到数学教学当中,那么数学的教育价值就难以体现, 所以我们要认识到数学史对数学教学的重要意义。在小学数学课堂教学中渗透数学史教育主要是因为数学史有如下的教育功能。
1.开阔学生视野,激发学习兴趣
在数学教学中,当前的大多数学生对数学的学习有着敬畏的态度,觉得数学学习枯燥单调,在实际中没有多大的作用,看不到他的实际应用。兴趣是学习最好的老师,所以在课堂教学中适当的讲一些数学史能提高学生对学习的兴趣,开拓学生的视野。如在讲数列时就高斯小时候计算 1到 100的自然数的加法的故事讲给学生听时,学生的情绪很高。
2.对学生进行品德教育,增强自我探索精神
中华文明源远流长,五千多年虽有起伏跌宕,但却连绵不绝,从未中断。就数学而言,中华民族有着光辉灿烂的过去,在元代以前,中国的许多成果处于世界领先位置。仅以现在的初中数学知识为例,十进位制、线性方程组的解法、正负数运算、开平方开立方法则、圆周率的计算都是古代取得的辉煌成就,有些成就领先世界千年以上。数学是璀璨夺目的中国代伟大的数学贡献不仅是当材料,而且古代数学家实事求高峰的高尚品德,也可以激励复兴而奋斗的自强精神。
3.数学史教育有利于提高学生的综合文化素质
随着社会信息化和高科技发展的步伐日益加快,知识经济已初见端倪,与此相应,教育也进入一个崭新的发展阶段。新的世纪的竞争是人才的竞争,而人才水平的高低在很大程
度上取决于其综合文化素质的水准,这就要求文理渗透、多学科交叉与兼容,数学史教育正好能够起到很好的桥梁作用。
4.通过数学史的讲解,还能够培养学生的辩证唯物主义思想
辩证唯物主义和历史唯物主义教育是德育的重要组成部分之一。培养学生树立辩证唯物主义的观点是数学教学任务之一。结合教材进行辩证唯物主义教育是有一定局限性的,缺乏生动直观的素材,而数学史中充满大量的辨证统一关系等的实例,正好弥补这一点不足。
5.在历史的脉络中比较数学家所提供的不同方法, 有利于学生科学方法的掌握。
思考是科学的学习方法的核心。对于学生来说, 只有勤于思考,才能了解知识的来龙去脉,把握知识的内在联系, 从而系统、全面、深刻地掌握知识。数学教育的核心是培养学生的思维能力。因此, 数学结论的推导过程, 思维方法的多样性, 问题的发展过程, 规律的提示过程, 都蕴涵着向学生渗透数学思想方法、训练思维的极好机会。
6.数学史教育有利于学生理解数学知识的本质
数学知识的本质主要体现在“数学思想”和“数学方法”上 ,从数学史来看 ,数学成果的流传也主要是数学思想方法的流传。因此 ,我们在学习数学知识的过程中 ,只有了解数学家进行数学研究的真实背景 ,理解数学家工作的方法 ,学习数学家的思维方式 ,才能透过现象看到本质 ,得到更有启发性和应用性的结论 ,才能从中吸取营养 ,激发出新的思想的火花。
7.数学史教育有利于培养学生的思维能力
数学一直被看成是思维训练的有效学科 ,数学史则为实现这一功能提供丰富而有力的材料。大量的事实充分表明 ,在我们认识世界的过程中数学方法具有强大作用 ,它显示出
解决科学与实践问题时抽象思维的巨大意义 ,能揭示科学理解能力形成过程和科学理论的出现与发展方法。
8.数学史教育有利于培养学生的数学研究能力
数学概念的形成和数学理论的建立,离不开一定的研究方法。方法正确,可以不走或少走弯路,否则事倍功半,徒费辛苦。数学家们在长期的数学活动中,总结摸索出了一系列科学研究方法。我们应向学生介绍历史上一些着名数学家的思维习惯和研究方法,分析他们的成功经验和失败教训,让学生从中获得借鉴和启发,从而增强其方法论意识,培养其科研能力。
总之,数学史的教育具有其独特风格,具有数学学科教育无法代替的功能,我们教育工作者应该充分认识其价值,有效地发挥它的教育功能。
8. 如何从数学史的角度来认识数学
如何从数学史的角度来认识数学
动机是行为发动的起因,也即个体用某种形式活动的主观原因.动机分为内在动机与外在动机.数学研究的动机是一种内在动机,并且是从生理需要出发的,不断发展成为满足社会需要、推动数学研究的驱力.数学学习动机是指与数学学习有关的某种需要所引起的、有意识的行为倾向,是激励或推动学生去行为、以达到一定的数学学习目的(标)的内在动因[1].教育家们相信,有效的学习要求每个学习者回溯所学学科历史演进的主要步骤[2].所以有必要从数学史角度研究数学学习动机.
一、逻辑推理与实际应用是数学学习动机
数学发展的历史包括两种典型的数学文化:一种是重视逻辑推理的希腊数学文化,一种是重视实际应用的中国数学文化.
数学史家将古希腊数学按时间分期:第一期从公元前600年到前323年;第二期从公元前323年到前30年,也称亚历山大前期;第三期从公元前30年到公元600年,也称亚历山大后期[3].前两个时期,希腊数学文化认为,数学命题只有通过几何形式的逻辑推理论证才能说明其正确性,论证数学成为数学研究的主流,几何形式的逻辑推理证明成为数学成果正确与否的衡量标准.这个标准逐渐发展成为对数学研究的期望或理想,即期望数学成果能够通过几何形式的逻辑推理来论证.在“亚历山大后期”,古希腊数学突破了之前以几何为中心的传统,算术、数论和代数逐渐脱离了几何的束缚.这一时期受罗马实用思想的影响,论证数学不再盛行,如海伦的《量度》中有不少命题没有证明.但论证数学中的逻辑推理在数学研究中仍占有重要位置,如丢番图《算术》书中采用纯分析的途径处理数论与代数问题[4].逻辑推理从几何论证中脱离出来,逻辑推理解决问题的思想发展成为数学研究的新理想,即希望数学问题可以通过纯逻辑推理的方法解决.纵观整个希腊数学文化,数学研究成为满足上述两种理想而付出的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.究其本质,逻辑推理思想是几何论证与分析法解决问题的根本,是上述两种理想中最本质的思想,并且满足动机的定义.因此它是古希腊数学研究的一个动机,也是人类进行数学研究的一个动机.
中国古代数学在整体发展上表现为算法的建构和改进[5].所谓“算法”不只是单纯的计算,而是为了解决一整类实际或科学问题而概括出来的、带有一般性的计算方法[4].算学的目的在于解决实际问题,而实际问题是层出不穷的,因此中国古代数学不仅经受住了统治者废除“明算”科的考验,甚至还有所发展,如元末明初珠算的普及.随着中国数学文化的形成,用数学知识解决实际问题成为算学的理想,即期望数学成果能够被实际应用.中国古代数学研究成为受这个理想而支配的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.实际应用满足动机的定义,因此它是中国古代数学发展的一个动机,也是人类进行数学研究的一个动机.
所以逻辑推理与实际应用是人类进行数学研究的两个动机,按动机的分类它们属于驱力,是从生理需要出发的内在动机.数学学习可以认为是有方向性的对已有数学成果的再次研究过程,可以看作是数学研究的特例形式.
9. 学习数学历史的感受和数学史的公理化
看到厚厚的一摞选修系列教材,有时我想,如果让我来选一部分为学生开设选修课,我会首选数学史选讲这一模块,因为我觉得, 数学史跟其它的数学专题相比,它更多的是讲这个数学发展的过程,而通过这个过程我们可以很好的来启发学生思维,来提高学生的学习兴趣,开拓学生的眼界。 下面是我结合专家的讲解及摘录相关资料后对数学史一章给出的功能分析和教学方面的一点想法: 一、开设“数学史选讲”的背景和意义 (一)开设“数学史选讲”的背景 “数学史选讲”是新课程标准中要求开设的一门高中数学选修课程。属于选修系列3,“是为对数学有兴趣和希望进一步提高数学素养的学生而设置的。”体现了课程标准的“提供多样课程,适应个性选择。”的基本理念。这一选修课的设置,主要是针对以往的数学课程过分重视数学学科自身体系的完整性和学生对基础知识技能的理解和掌握,却在很大程度上忽视学生情感培养这一问题而提出的。数学新课程认为数学内容应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学科学的思想体系,数学家的创新精神,体现数学的文化价值。 (二)开设“数学史选讲”的意义 学生掌握一定的数学史,对于揭示数学知识的现实来源和应用,引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,激发学生对数学的兴趣,培养探索精神,揭示数学在人类文化史和科学进步史的地位与影响进而揭示其人文价值,发展学生数学学习的情感因素,都有重要的意义。具体来讲,“数学史选讲”有以下几个方面的意义。 1.揭示数学知识的来源与应用 任何知识都有其发生、发展的历史。数学史往往揭示出数学知识的来源和应用,从而可以使学生感受到数学在文化史和科学进步史上的地位与影响,认识到数学是一种生动的、基本的人类文化活动,进而引导他们重视数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。 2.理解数学思维 一般来说,数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对的失去了生气与天然的,已经被标本化了的数学。 3.培养学生的辩证唯物主义数学观 通过“数学史选讲”课展示历史上的开放性数学问题等,将使学生了解到数学并不是一个静止的、已经完成的领域,而是一个开放性的辩证的系统,认识到数学正是在猜想、证明、错误中发展进化的,数学进步是对传统观念的革新,从而培养学生的辩证思维和正确的数学观。 4.榜样的激励作用 数学发展的过程是人创造的过程,特别是一个个伟大的数学家的创造的过程。在他们的身上,集中体现了人类精神追求的伟大过程。这些杰出数学家的精神力量,对于今天的每个学生来说,有着巨大的激励作用。 5.增强学生学习数学的兴趣、爱好 数学是历史最悠久的人类知识领域之一。从远古结绳记事到现代高速电子计算机的发明,从量地测天到抽象严密的公理化体系,在数千年的数学历史长河中,重大数学思想的诞生与发展,构成了科学史上最富有理性魅力的题材。这些理性魅力的题材对于开阔学生的眼界、启发思维和为进一步的学习奠定基础都是十分重要的,而把它们作为历史上的着名工作来介绍,就会增加许多文化韵味并极大地激发学生的兴趣,从而有助于学生对数学建立良好的情感体验,增强学习数学的动力,对日常的数学学习起到积极的作用。 二、“数学史选讲”课的要求与内容 (一)“数学史选讲”课的要求 “数学史选讲”课旨在教师通过生动丰富的事例,使学生了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学在人类文明发展中的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。因此它对教师和学生两方面都提出了较高的要求。对数学教师而言,它需要教师具备开设“数学史选讲”课的能力。这就要求教师要系统、全面的了解数学史。教师能充分利用图书馆、网络、多媒体课件等课外资源引导学生自己阅读,拓宽视野,并指导学生对某一专题进行专门研究;对学生而言,数学史知识渊源流长,其中蕴藏的数学思想很多,在课堂上有限的时间内是无法一一涉及的,这就要求学生在课外能通过各种途径了解这方面的知识,并能就自己感兴趣的专题作进一步的探讨,切身感受“做数学”的好处。 (二)“数学史选讲”课的内容 本专题由若干个选题组成,内容应反映出数学发展的不同时代的特点,要讲史实,更重要的是通过史实介绍数学的思想方法。我觉得学习数学史有如下三个目的:一个是搞清这个历史本来面貌;还有就是为了数学研究;但是我想我们更多的是要为教好数学来讲这个数学史。我们主要是目的要明确,就是为了提高学生的全面的素质,从这个角度来讲这个数学史。因此我的主要想法,就是我们不要把它看成一个系统地讲数学史的课程。 三、“数学史选讲”的教学建议 (一)“数学史选讲”的内容选择 从“数学史选讲”的作用来看,“数学史选讲”应该主要是一门数学课,而不是历史课。它的目标和重点应该在很大程度上围绕高中数学课程的目标和重点,同时兼顾义务教育阶段已经涉及的一些重要数学内容。在知识性问题上不应要求过高,重在突出数学思想方法,突出启发性和引导性,激发学生的兴趣和思考。 由于本课只有18课时,不可能系统讲授。又由于这门选修课是为在数学方面具有一定实力和足够兴趣的学生开设的,因此在内容的选取上要精心考虑。“不必追求数学发展历史的系统性和完整性,通过学生生动活泼的语言与喜闻乐见的事例呈现内容,使学生体会数学的重要思想和发展轨迹。”内容的选择要符合学生的接受水平,呈现方式应图文并茂,丰富多彩,能引起学生的兴趣。 (二)“数学史选讲”的内容安排形式 本专题的内容安排可以采取多种形式。既可以由古至今,追寻数学发展的历史;也可以从现实的,学生熟悉的数学问题出发,追根溯源,回眸数学发展中的重要事件和人物。 (三)“数学史选讲”的教学方式 “数学史选讲”课的“教学方式应灵活多样,可采取讲故事、讨论交流、查阅资料、撰写报告等方式进行。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件和人物,写出自己的研究报告。”在教学的时间安排上,可考虑教师的课堂讲授与学生课外阅读、查阅资料相结合。教学可按照如下模式进行:提出问题→引导阅读→学生讨论交流分享→教师的概括与提升→进一步的阅读。 另外,可以考虑现代教育技术和网络的应用。这些工具和手段的运用,将会使得教学更加形象、生动、具体化、网络化、趣味化。 总之,本专题的教学应提倡多样化的学习方式,努力培养学生的自主探索和合作交流意识,力求使学生切身体会“做数学”的好处 。不应当照本宣科,成为大事年表和流水账,枯燥乏味,缺少启发性等,使学生乘兴而来,败兴而归,从而对数学史失去兴趣,对数学失去兴趣。
10. 怎样对数学史分期
按时代顺序。
不同的线索将给出不同的分期,通常采用的线索如:
1、按时代顺序 。
2、按数学对象,方法等本身的质变过程。
3、按数学发展的社会背景等等。由于数学的发展是一个错综复杂的只是过程与社会过程,用单一的线索贯穿难免有会有偏颇,因此一般数学通史着作往往采取以某一线索为主,同时兼顾其他因素的做法。分期问题的深入讨论属于数学史专门研究的范围,而且存在许多争议。
对数学史作出如下分期:
1、数学的起源与早期发展(公元前6世纪)
2、初等数学时期(公元前6世纪——16世纪)
①古代希腊数学(公元前6世纪——6世纪)
②中世纪东方数学(3世纪——15世纪)
③欧洲文艺复兴时期(15世纪——16世纪)
3、近代数学时期(或称变量数学建立时期,17世纪——18世纪)
4、现代数学时期(1820——现在)
①现代数学酝酿时期(1820——1870)
②现代数学形成时期(1870——1940)
③现代数学繁荣时期(或称当代数学时期,1950——现在) 特别说明的是,关于现代数学的起始与划分,目前分歧较大。