⑴ 什么是数学,数学的概念
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>
⑵ 什么是数学概念
众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手.
概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来.
因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法.
一、从概念的产生背景着手,层层深入
对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它.
教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍?
这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题?
紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 .
在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解.
二、从概念的生活背景出发,创设学习情境
很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸.
等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中.
为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念:
阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当他追到1里处时,乌龟前进了里,当他追到了里,乌龟前进了里;当他追到了里,乌龟又前进了里……
(1)分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;
(2)阿基里斯能否追上乌龟?
让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,积极性和主动性高涨,课堂气氛也十分活跃.
三、从概念的历史背景出发,激发兴趣
复数和虚数的概念有悠远的历史背景,是数发展到一定的阶段的必然产物.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,在学生的有限的知识结构中也找不到虚数的生活原型,所以学生很难完全理解它.因此,在讲解这两个概念时,可以将数的发展史、虚数与复数的出现历程作简单阐述,为了表述得清晰而有趣,教师可以把这过程制作成动画短片:
从原始人分配食物开始,首先是自然数的出现,然后到分数的出现.接下来经过漫长的数的发展,人们又发现了很多不能用两整数之比写出来的数,如圆周率等.人们把它们写成π等形式,称它们为无理数.到19世纪,由于运算时经常需要开平方,如果被开方数是负数,比如,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.这样,可以让学生融入教学中,跟着故事的结尾一起思索,然后引入新概念:数学家们就规定用符号"i "表示"-1"的平方根,即=-1,虚数就这样诞生了.实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.种引入概念的过程新颖别致,一开始就能抓住学生的眼球,吸引他们的注意力,使课堂教学轻松有趣.
四、从概念的专业背景出发,讲求实用
许多数学概念在其他的专业领域应用也非常广泛.把数学知识和其他专业知识有机结合在一起,可以让学生充分认识到数学学习的重要性.
三角函数这一概念在很多专业领域都有重要的应用.在物理方面,简单的和谐运动,星体的环绕运动,峰谷电;在心理生理方面,情绪周期性波动、智力体力的周期性变化、一天内的血压状况;天文地理方面,气温变化规律,月缺月圆、潮涨潮汐的规律;日常生活中,车轮的变化,这一切的研究都离不开三角函数.
因此三角函数的应用课里,可以设计一些有周期性变化规律的实际问题,让学生建立简单的三角函数模型,培养学生数学建模,分析问题、数形结合、抽象概括等能力,体验数学在解决实际问题中的价值和作用,培养学生勤于思考、勇于探索的精神.
学生对新概念的学习只有在已有知识的基础上才能构建,所以教师在教学时一定要注意教材所设计的知识结构.要做到既不脱离课本,又不拘泥于课本,要有大胆的创新精神.要根据学生实际情况,设计好每一堂概念课.
⑶ 如何上好数学概念课
数学概念课是数学课堂教学常见的课型之一,是值得我们数学老师认真思考,探讨的.学习了国培课程初中数学概念课堂教学设计,下面我谈一些我个人的收获.一.注重新概念科学的引入是讲好概念的前提 数学概念具有抽象性,新概念的引入要从学生的认知水平和实际情况出发,根据数学概念形成和发展过程,联系生产、生活实际、应用数学教具,使学生觉得概念引入顺其自然,合情合理,生动直观,易于理解,为概念教学创造良好开端.1. 寻求概念形成根源,增强学习的趣味性 几乎每一个数学概念的形成,都伴随着一个动人的故事.概念引入,采用愉快教学法,故事引路,可增强学习的趣味性,降低或消除学习数学的畏惧感.2. 联系生产、生活实际,展示概念的具体性 对于原始和一些较抽象的概念,要联系生产、生活实际情况,利用学生已有的实际知识,给概念赋予具体内容,使学生对较抽象的概念有"看得见,摸得着"之感.如"平面"的概念,可从常见的桌面、墙面等物体表面入手,抽象出平面概念"无限延伸性和无厚度"的本质特性.通过实例,有利于将抽象的概念,形象、生动、直观化,便于学生理解.3. 应用数学教具,提高概念的直观性 有些概念可借助于直观、形象的模型或教具,让学生从感性认识入手;逐步上升到理性认识,形成正确的概念.例如在学习“棱锥”概念时,可预先布置学生剪贴一个底面是多边形,其余各面都是三角形的封闭几何体.学生在想方设法完成这个几何体的创作过程中,明确了要制作成功必须使各三角形有公共的顶点(否则不封闭),这实质上就是概念的一个重要内涵.这样由学生自己总结出棱锥的概念既生动活泼,又锻炼了创造思维能力.二.提示概念本质属性是理解概念的关键 在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行全面分析,突出其本质属性,才能使学生正确理解概念.例如,函数概念,在讲解时,要选取一定数量的实际问题,用解析法、图象法、列表法等表示这些实际问题,并抽象出函数概念.使学生认识到函数概念的产生不是凭人的主观意识决定的,而是客观实际的需求.三.对照、比较是掌握概念的重要方法 数学知识的系统性很强,新概念大多是在已学的旧概念之上,又增加新的属性而建立起来的.新、旧概念之间,既有区别,又有联系,既有共同之处,又有不同特点,运用对照、比较,是学生掌握新概念的重要方法.例如全等与相似、性质定理与判定定理,即用对照比较法进行新概念的教学,既有利于新概念的理解掌握,又复习巩固了旧概念,同时又能体现知识的发生与迁移过程,便于培养和发展学生思维的广阔性,增强学生数学发现能力.四.强化应用是巩固和深化概念的必要途径 教学中,为了便于学生形成数学概念,把有关对象暂时从它与周围事物的丰富联系中割裂开来,相对独立地加以研究考察,有利于突出并概括它们的本质属性,排除影响学生形成概念的其它干扰因素.但学生这样获得的数学概念是比较孤立、静止的.而许多数学概念,尤其是一些重要概念,牵涉面广,联系着诸多知识.所以在概念形成以后,还须及时上习题课,加强练习,进行概念的巩固、发展和深化.例如,方程的“根”和函数的“零点”,表面看起来都是很容易掌握的,如果教学中把这两个概念与根的判别式,函数的性质,绝对值概念等有关知识割裂开,学生对这两个概念就不能透彻地理解,也谈不上熟练地运用,更达不到提高解题能力的目的.有部分学生由于不了解方程的根与函数的零点间的内在联系,难于下手,或由于绝对值概念掌握的不好,得出错误的结果.对于概念的深刻理解,是提高解题能力的基础,反过来,通过必要的解题实践,更能加深和巩固概念.综上所述,只要在思想上对数学概念教学有足够的重视,明确概念教学的目的要求,把握好每一个教学环节,应用分析比较,加强练习,揭示概念的内涵,把握好概念的外延,概念教学将大大加强,从而促进数学教学质量的提高.
⑷ 数学概念课教学的重要性
数学概念是数学基础知识的重要组成部分。
概念掌握不清楚,就无法掌握定律、法则和公式
2. 数学概念是发展思维、培养数学能力的基础。
没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维的培养
⑸ 初中数学概念教学课包括哪几类
数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体。正确理解数学概念,是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。因此。抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。在教学过程中,一些教师不注意结合学生心理发展特点去分析事物的本质特征。只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。
一、利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识。再如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向,这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念。这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示:测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度:记作+3°,零下3度:记作-3°,这里出现了一种新的数——负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。
三、深入剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”——说明变量的存在性;②“在某个变化过程中有两个变量x和y”——说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”——说明变量x的取值是有范围限制的,即允许值范围;④“y有唯一确定的值和它对应”——说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。
四、通过变式,突出比较,巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“π与3.14159”为例,通过这样的训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
五、注重应用。加深对概念的理解,培养学生的数学能力
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念。完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量。
⑹ 什么叫做数学概念
数学概念(mathematical concepts)是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。
在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。
⑺ 小学数学哪些是属于概念课的啊
小学数学概念课多了,各种图形的课以及各种统计图的课都涵盖概念。
⑻ 什么叫数学概念教学
数学概念是现实生活中某一数量关系和空间形式的本质属性在人的思维中的反映。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。
小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对学习数学的兴趣。要掌握正确、清晰、完整的数学概念,既依赖于他们的数学认知结构状况,又依赖于教师的教学措施。笔者认为:有效的概念教学应将概念的逻辑联系与学习者认知水平有机结合起来,制定或选择恰当、有效的教学策略。
一、描述性概念数学要直观形象。
一般来说,学生学习概念是从感知学习对象开始的,经过对所感知材料的观察、分析或通过语言文字的形象描述所唤起的回忆,在头脑中建立学习对象的正确表象,才引入概念。小学生对事物的认识是从具体到抽象,从感性到理性,从特殊到一般的逐步发展过程。小学生的思维还处于具体形象思维阶段。小学数学中的许多概念,都是从小学生比较熟悉的事物中抽象出来的。描述性概念的讲授方法必须从学生现有的生活经验出发,坚持直观形象的原则。如:在学习长方形之前,学生已初步的接触了直线、线段和角,给学习长方形打下了基础。教学长方形的认识时可以利用桌面、书面、黑板面等让学生观察,启发学生抽象出几何图形。从中总结出这些图形的共同特点:
(1)都有四条边;(2)对边相等;(3)四个角都是直角。这样使学生在头脑之中形成对边相等、四个角都是直角的四边形是长方形的概念。
二、定义性概念教学要准确推敲。
数学是一门严密而精确的科学,特别是有关概念具有更强的“压缩性”。字里行间包含着深刻的内涵,丰富的思想内容和数学思想方法,因此在定义性概念教学中,要指导学生咬文嚼字、准确推敲关键词语的涵义。例如在教学互质数时,教师在引导学生对几组数,如“4和7”、“10和9”、“25和18”的公约数的观察的基础上,引入互质数“公约数只有1的两个数叫做互质数”的概念。然后,老师要引导学生认真推敲,对互质数的这个概念要弄清:(1)它是两数之间的一种关系。(2)它是从公约数的个数这个角度提出来的。(3)关键词“只有”的含义。从这三个方面揭示出互质数的本质属性。教学中只有抓住这些属性,逐项剖析,才能使互质数的特征活脱脱地展现出来。教师通过对“互质数”的详细解读,既抽象概括出“互质数”这个概念,又能为学生深刻理解掌握互质数奠定了基础。
三、精心设计习题,清晰概念的内涵外延。
每一个概念都有一定的外延和内涵,概念的外延就是适合这个概念的一切对象的范围;而内涵就是这个概念所反映的对象本质属性的总和。概念教学中,在学生对概念理解的基础上,教师要精心地设计各种类型的题目,让学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而加深对概念的理解。例如,在“因数与倍数”这一章的概念教学中,可以设计如下练习:
1、填空:
(1)、10以内的偶数有
(2)、20以内3的倍数的有 、
(3)、最小的质数是 最小的合数是 。
(4)、18的因数有 。
2、判断:
(1)、8和9是互质数。
(2)、整数可以分成质数和合数两部分。
(3)、6÷1.2=5是整除。
(4)、10和13是互质数,所以他们没有最大公约数。
3、选择:
(1)、4和6的最大公约数是( )。
A、4 B、6 C、2
(2)、把6分解质因数是( )。
A、6=1×2×3 B、2×3 C、6=2×3
通过不同的角度、变换叙述的语言、正反不同的例子、对有联系的概念进行对比等多种形式的训练,深化概念的本质属性,更能帮助学生清晰地掌握概念的内涵与外延。
四、利用知识迁移,构建知识网络。
这包括两方面的要求。第一方面,要加强数学中最基本的概念的教学。所谓最基本的概念,就是在知识与技能的网络中,那些带有关键性的、普遍性的和适用性强的概念。如,加法的概念、比多比少的意义、差的概念、乘法的意义、比的意义、倍的概念等等,越是最基本的概念,它所反映事物的联系就越广泛、越深刻。抓住这些最基本概念的教学,能使知识产生广泛迁移,使学生学习起来容易理解,同时也有利于记忆。第二方面,小学数学中许多概念之间存在着密切的联系,教学中要指导学生对一些相关联的概念进行对比,归类,揭示它们之间的内在联系,抓住这些联系就可以使知识脉络更清晰,知识结构更完整。掌握了这些联系,从特殊到一般,从一般见特殊,便可实现相关知识的有机统一。例如:长方形、正方形、梯形、平行四边形都是四边形,但是他们又相互区别。老师在教学完梯形之后,要对四种有联系又有区别的四边形进行分析比较,从而加深学生对四种四边形的理解。
五、加强训练,指导学以致用。
“使学生初步学会运用所学的数学知识解决一些简单的实际问题”,是新课程标准所赋予我们新时期小学数学老师的任务。在实际教学中往往遇到学生会很熟练地背出概念内容,但不能进行灵活应用的现象。为此,教学中除了要重视数学概念的形成和获得外,还要加强数学概念的应用训练,以增强学生的实践意识。数学来源于生活,就必然要回到生活中去。教师要积极创造条件,引导学生用数学概念去解决生活中的数学问题,让学生在训练中体验教学的价值,获得成功的喜悦。例如,我们在教学“众数”后,可以设计这样一个问题情境:有一家公司,经理的月工资是8000元,2个部门主管每人的月工资是5000元,10个工人每人的月工资是1500元,你要选择用平均数、中位数、还是众数来反映这个公司员工的月工资水平,并说明理由。学生将学过的三种统计量的知识,运用到生活中去解决实际问题,在“学数学”中“用数学”,体会数学的应用价值,增进对数学的理解和应用数学的信心,进而形成勇于探索、勇于创新的科学精神。
总之,要让小学生掌握正确、清晰、完整的数学概念,必须在概念的教法上研究、学法上探讨,从而提高概念教学的高效率,培养学生的学习兴趣,提高学生的数学素养。
⑼ 小学二年级数学概念教学的课有哪些
对于数字的认识,对于大小的认识,对于加减乘除的认识等等,都是属于小学二年级数学概念课。有一些内容,并且这些概念课的话,主要就是让学生去了解这些是什么东西,并不会让学生去实际的进行写题或者其他的一些考试。
所以像这种概念课的内容的话,接受度一般都会比较高,因为仅仅只是让学生了解一下这些概念,然后了解一下背景和基础,为未来的学习去打下一个扎实的基础,所以在这种概念课的学习里面,同样是需要认真的,因为你不能够认真学的话,就不会学到相关的一些基础知识。
所以以上就是小学二年级数学概念课教学的课程内容。
⑽ 数学概念教学方法具体是什么
数学概念是抽象化的空间形式和数量关系,是反映数学对象本质属性的思维形式。数学概念也是数学基础知识和基本技能的核心,它是理解、掌握其它数学知识的基础,对培养学生的逻辑思维和灵活运用知识实现迁移的能力有重要的作用,在数学课堂中如何有效地实施概念教学,直接影响教学效果的提高。现结合数学概念教学的实践,谈几点自己的认识与做法。
一、重视教学情境创设,实现概念引入的自然化
数学教材多是直接给定概念,教师应遵循高中数学新课标的要求,加强概念的引入,引导学生经历从具体实例抽象出数学概念的过程。合理设置情境,使学生积极参与教学,了解知识发生、发展的背景和过程,使学生感受到学习的乐趣,这样也能使学生加深对概念的记忆和理解。
1.以数学史话引入概念
教学中,适当引入与数学概念相关的故事,并巧妙处理,既可激发学习兴趣,又可达到教育之目的。如教曲线方程时讲讲笛卡尔和费马;学数列时讲数学家高斯故事;讲二项式定理时向学生介绍杨辉等。在故事引入的同时鼓励学生勇于探索,培养他们爱科学、学科学、用科学的科学精神。
2.以实际问题引入概念
数学概念来源于实践,又服务于实践。从实际问题出发引入概念,使得抽象的数学概念贴近生活,使学生易于接受,还可以让学生认识数学概念的实际意义,增强数学的应用意识。例如可从教室内墙面与地面相交,且二面角是直角的实际问题引入“两个平面互相垂直”的概念。
3.利用学生探究实现概念的自然引入
以概念为基础,以过程为导向,是概念教学的基本理念。让学生在学习中发现问题,并通过一定的方式解决问题,这是新课程理念的最好体现。在概念教学过程中,教师应在学生现有的知识背景、能力水平和心理特点的基础上,给学生提供适当的范例,引导学生对实例进行观察、比较,对概念进行假设、验证,从而获得正确的概念。如在“异面直线距离”的概念教学时,不妨先让学生回顾学过的有关距离的概念,如两点间的距离、点到直线的距离、两平行线间的距离,引导学生发现这些距离的共同特点是最短与垂直。然后启发学生思考在两条异面直线上是否也存在这样的两点,它们间的距离最短?如果存在,有什么特征?经过探索,得出如果这两点的连线段和两条异面直线都垂直,则其长是最短的,并通过实物模型演示确认这样的线段存在。在此基础上,自然地得到“异面直线距离”的概念。在引入过程中调动了学生积极性,培养了勇于发现,大胆探索的精神。
二、善于解剖概念,实现概念教学的深刻化
数学概念是为了解决数学问题,对概念理解不清,在解题时就会出现错误;对概念理解不透彻,常会遇到问题束手无策。要正确深刻地理解概念绝非易事,数学概念具有严密的科学性,因此概念教学应让学生准确把握概念的内涵和外延,教师要根据学生的知识结构和能力特点,从多方面着手,适当引导学生剖析概念,抓住概念的实质。在教学中可以从以下几个方面解剖概念:
1.强调概念中的关键词语
如对函数概念中的“任何”与“唯一”要重点强调。然后举例 ,前者可以称 是 的函数,后者不能称 是 的函数。因为对于任何一个 ,不是对应唯一 。这样通过正反实例,强调概念中的关键词语,更能加深概念的理解。
2.注重数学语言的翻译
数学语言有文字语言、符号语言、图形语言。符号语言有较强的概括性,更能反映概念的本质。如等差数列的概念可用符号“ ”( 为常数)概括。用定义证明一个数列是等差数列时,就是应用概念的符号语言。图形语言则能更形象地反映概念的内容。如讲“交集”概念时,用文氏图表示“A B”,可以很容易理解概念。
3.注重相似概念的对比分析
有比较才有鉴别。用对比方法找出容易混淆的概念的异同点,有助于学生区分概念,获取准确、明晰的认识。比如对分类计数原理与分步计数原理、排列与组合的概念,就可以通过概念对比,并结合实例的方式加深概念理解。
三、精心设计练习,实现概念教学的持续化
数学概念教学的主要目的是让学生在理解概念的基础上,运用知识解决数学问题,提高数学能力,全面提高学生素质。所以在练习设计上一定要精、针对性强,便于提高学生的能力。
1.加强应用概念中易错原因剖析
很多概念本身就是解题方法。如“反函数”概念,就已经体现了反函数求法:“反解 ”——“将 与 互换”——“标明反函数的定义域”(要通过原函数的值域来确定)。在反函数的求解中,学生常出现反函数定义域由反函数解析式本身确定而导致的错误。如果注意在解题中强化反函数概念以及它的由来,就可以避免这样的错误了。
2.加强概念的逆用、变用,从中获得解题方法