导航:首页 > 数字科学 > 数学的魅力表现在哪些方面

数学的魅力表现在哪些方面

发布时间:2022-07-01 10:28:52

A. 数学有什么魅力

这或许可以是写数学写到颠狂后的至理名言,也可以是学数学学到后来的至高境界!由浅入深,难易相合,娓娓道来,即使对于那些对数学生疏的人,也能勾起他们阅读的兴趣。我想这就是数学的魅力!
不记得是从什么时候开始的,我成了在文科数学上小有天赋的那一类学生,学习数学对我来说已不觉得深奥而枯燥,相反,充满了乐趣甚至诱惑,记忆当中,高考的奋战更是让我极度重视数学,它也成了我快乐的根源之一。而这本书又勾起了我对高中数学学习时光的回忆,也想起了大一学习高等数学的勤奋时光。
我想这本书所带来的数学的魅力,不一定就是神奇的公式定理本身,也不一定是正弦曲线、无穷值域、椭圆方程,而这本书所带来的豁然开朗的领悟和愉快的阅读体验也是它的魅力所在!
写满公式的纸片,其实不过是成功的必要不充分条件。
导数曲线、圆锥曲线、垂直平面……还有歌德巴赫高斯王子所引起的阅读数学的兴趣,在书桌旁阅读数学经典,领略神奇数字的魔力。
若要问我什么是数学,我恐怕难以一言以蔽之。但读这本书,可以让人豁然开朗,受益匪浅,用一种思维方法去思考看似繁琐的数字、奇妙的公式组合,不读悔矣!

B. 数学的魅力及为什么要学习数学

数学至今魅力不减是因为 ,一是数学理论一经确立,基本上不会被推翻,以后只是深化和推广而已,不象其它自然科学分支经常发生新理论取代旧理论的现象。二是它的高度抽象性使它居于比自然界及至其他自然科学更高的层次,自然规律和谐用数学结构表示出来时,已经抓住了最本质的特征,由“形似”到了“神似”的地步。数学史的魅力在于,它是人类文明史中一个非常重要的部分,波澜壮阔,源远流长,奔腾不息。它博精深,令人临川浩叹:“逝者如斯夫!”它精英荟萃。令人心驰神往:“大江东去,浪淘尽千古风流人物”它是数学与哲学、历史等学科的综合,在这个意义上说,它也是最早的边缘科学、交叉科学之一。数学无处不在,我们更赞叹的是它的奇妙和独特——数学魅力。
在我们自然界中的形式美如:
(1)累积状之美。如崇山峻岭、花丛灌木。
(2)射线状之美。如日月星辰的光芒,孔雀开屏的尾羽。
(3)回旋状之美。如蜗壳、螺壳。
(4)对称状之美。如雪花、晶体。
(5)排列状之美。如鱼鳞、鸟羽。
(6)网目状之美。如龟甲、叶脉。
(7)斑文状之美。如虎皮、豹皮。
(8)平行线之美。如垂柳、雨丝。
在我们几何图形中的形式美如 :
(1)圆。人类的知觉对简单的圆形是偏爱的。其原因在于它的绝对完美性,和谐、稳定,使人称心舒畅,在心理上达到满足的最佳状态。
(2)抛物线。阿基米得在名着《抛物线的求积》中,利用力学和穷竭法,算出物弓形的面积,是微积分思想的先导。他还巧妙地用抛物线帮助作出正七边形。
(3)椭圆和双曲线。这两种圆锥截线也是后来在天体力学中找到了应用。古代希腊有椭球面音乐厅,乐队配置在个焦点的位置处,以得到良好的声音反射效果。比例美。即我们常常说的“黄金分割”。这是大家很熟悉的。公式美。数学公式的丛林、公式的海洋。公式是智慧的结晶、公式是简练的语言,因此,它给人们的印象是睿智、简洁、浩瀚。数字美。如
99 =9801
999 =998O01
9999 =99980001
99999 =99998000O1
三、数学应用及数学美
数学在其它学科中的应用不仅是相互爱好,主要还是相互需要。
l、数 学在音乐中的应用。
例如我国春秋时用 “三分损益法”确定弦长与音的关系,就是在基音弦上去一分 (即乘以 2/3)或加一分(即乘以 4/3)以定另一律的弦长,依此类推,直到“高八度”或“低八度”。这方法是近似的。
2、数学在绘画中的应用。
达 •芬奇在着作中多处记有作透视图的例子,他最早谈到远景的比例,给全景透视奠定了基础,解释了立体视感的原因,提出了阴影分割理论、反射的特性和物体色彩变化。
3、数学在雕塑中的应用。
被尊为男性美典范的别尔维杰尔的阿波罗雕像为标准,人们发现它的腰部、膝盖、喉结 、面部、手臂等处都是“黄金分割”点。我国古代雕塑有独特的风格 ,其中一些小巧的玩意闪烁着数学的智慧,例如由六块小木头雕成而能拼接为空间十字形的组合件,被外国人称 为 “中国益智玩具”,由于其别出心裁的构思和外形,显得很美。
4、数学在建筑中的应用。
约纪元前2700年的古埃及第四王朝法老胡夫的吉萨金字塔,由260万块重达 l2吨的巨石堆成,石块之间只有几丝的缝隙,高150米,重约 3100万吨,真是难以置信的成就。建筑的数学美表现在比例上,它无需真正去丈量,立即就因其和谐协调而在人们的心灵上激起美感。
5、数学在诗歌中的应用。
如 : 日啖荔枝三百颗,不辞长作岭南人。 (苏 轼)
锦瑟无端五十弦,一弦一柱思华年。 (李商隐)
我国着名诗人闻一多,曾经倡导过新诗的格律,他的多种尝试,有人形容为一种建筑美 ,其实是一种数学美。句式、字数、行数的变化。无一不是可以数量化的。而且,其实是对称、均衡、周期等要素,也隐含数学概念,这方面的探索应当说是有益的。
6、数学在抽象艺术中的应用。
例如,分数维曲线已经引起气象学家、地震学家、宇宙学家的浓厚兴趣,事实上在地质学 、地理学、电工学、语言学、经济学、空气动力学乃至数学学科本身都找到了应用,分数维曲线显示的乐曲也很动听。
7、数学在现实生活中的应用。
例如,在我国,个人的劳动收入多少是与个人所做贡献的大小成 比例的 。中国有句俗语是 : “一分钱 ,一分货”。看来这只是一种经济关系,但其中却隐含了数学概念。假如没有数学上的量的话,我想大家也不会在“量”的“得失”上而斤斤计较了,可数就是 数,“l”就是“l”,“2”就是 “2” 。
8、数学成就了计算机“风行天下”
计算机中的“二进制”“十进制”都是人工智能的杰作,人们将最胖的数“0”和最瘦的数“l”进 行排列、组合造就了一代代“计算机英雄”。人们的生活变得方便、快捷了,毫无疑问,数字化时代是目前最先进的“时代”。
四、数学思想助我设计出圆形元素周期表
我将化学元素放人到数学坐标系中,经过多次的排列,最后得到一张“圆形元素周期表 ”。即坐标中第一、第二象限是主族元素;第三、第四象限是副族元素和第Ⅷ族元素,横轴 (x轴)将主族元素同过渡元素分开,这样,所得到的周期表比现用的周期表更紧凑、更直观、更美观、使用更方便。其规律性在国际上可以通用。 (详情见附录 1、附录 2) 我 只是将数学思想同化学学科相结合,便有了更新的发现。看来,数学 的每一个特征都使人为之仰慕倾心。我们看它具有如此丰富多彩的外貌而击节称赏,并愿意做 出更多的美的发现。
总之 ,在我的眼里 ,数学比任何学科的价值都要大,再加上它具有独特的魅力吸引着我,令我不得不为之倾心。其实,在数学方面 ,我根本就没有什么发言权,只是曾在数学思想方面尝到了一点 “甜头”。在此,我只是有感而发,学好数学不仅能提高个人的情商,即个人对科学的情感、态度和价值观。从过去的发展史可以看出,中国最早得到世界绝对一流研究成果的,也是在数学方面。华罗庚、陈景润就是证明。我在本论文中也举出了大量的例证,可以充分说明数学真的是魅力无穷,我们不仅要对数学产生浓厚的兴趣,更应对其威力拥有坚强的信念。让我们大力宏扬与时俱进,开拓创新的精神,将个人的智慧运用到人类社会当中去,为人类社会的发展贡献自己的力量。

C. 数学的魅力的魅力是什么 不是书!

如果你学过“杨辉三角”以及“黄金分割”,你会发现数学的艺术美.
数学最大的魅力在于——无论自然科学,还是购物、买车、买房、理财等等,你都会根据相关的知识体系,发现最佳方式.
一起加油吧!

D. 数学的魅力是什么

数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。

数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。



数学的魅力可能在于它的应用方式,你难道敢说黄金分割线不美丽吗?这是世界上最美丽的方式,利用黄金分割线你可以做很多事情,你可以知道自己的装扮是怎样的,你可以拍出非常美丽的图片,美丽的画面,这些都是黄金分割线基本的应用,而数学就是在这其中散发出它的魅力。



E. 数学的美体现在生活的哪些方面

数学的美体现在哪些方面
(1)完备之美

没有那一门学科能像数学这样,利用如此多的符号,展现一系列完备且完美的世界。就说数吧,实数集是完备的,任意多的实数随便做加减乘除乘方开方,其结果依然是实数(注意:数学上完备是根据序列的收敛性严格定义的,我这里不是完备的严格说法,但可认为是广义的说法)。引入虚数单位,实数集扩展到复数集,还是任意多的复数,还做那些运算,结果还是复数。

把具体的数抽象成空间中的点,在一定的假设和约定之下,可以得到完备的空间,这些空间可以是一维的,也可以是二维三维甚至多维的。三维之外,你就难以想象,但不能否认其存在。某空间的点、序列依一定的法则进行运算,依然不能离开那个空间,这就是完备性。这种完备性是很奇妙的。你可以把它想象成在一个球体中,不管你如何运动,总是不能钻出球面。

具有完备性的空间,可以带来许多好处。工程中用得最多的空间是Hilbert空间。顺便提一句,Hilbert是个二十世纪最伟大的数学家之一。

另外,数学中的诸多体系,其本身也都是完备的,如欧式几何,这是大家所熟知的,在几个公理的基础上,推演出一系列漂亮的结论,生命力经久不衰,尤其在工程运用中。

(2)对称之美

提到对称的美,大家首先想到的是几何,其实几何只是一方面,是“看得见”的那一方面。实际上,对称性在数学中处处存在。如微积分的基本定理,展现了微分与积分之间的紧密联系,本身具有很强的对称性。如泛函中的对偶算子,不但在运算上具有显着的对称性,在性质上也处处显示出一致性。

(3)简洁之美

数学中有个非常漂亮的公式,那就是欧拉公式。这个式子把数学中几个“伟大的”数给联系到了一块,它们分别是自然对数、圆周率、虚数单位以及1,其中前两个是超越数,是无数个超越数中人类目前仅仅找到的两个,而且这两个对数学影响巨大。我大胆猜想,当下一个超越数被找到的时候,数学将会经历另一场巨大的革命。虚数单位今天看起来没什么特别,但它刚被引进的时候曾受到众多(大)数学家的置疑和反对,最后它终于还是进来了,而数学也开辟了一条康庄大道,那就是复变函数。

勿庸置疑,欧拉公式是简洁而完美的,另一个可以跟它抗衡的式子出现在物理学中,那就是爱因斯坦的质能变换公式。我这种说法可能有点武断,不过我目前只能想到这一点,呵呵。

(4)抽象之美

这一点可能会引起许多人的异议,因为在许多人看来,抽象是不好的,因为离现实太远。可是我不这么认为,数学如果不抽象,便难以发展,虽然很多问题都是从现实引出的。数学建立在符号逻辑的基础之上,即使是解决实际问题,也要把问题抽象出来,用数学符号表示,才可以很好的解决。另一方面,抽象的数学,能带动你在无限的思维空间中遨游,抛开一切杂念,成为一种美好的享受。当然,这有点理想化,但不可否认,这确实是一种美的体验。

F. 数学的魅力表现在哪些地方

上面的兄弟,你真厉害! 特别是第二句,呵呵呵呵呵! 牛!
我认为数学的魅力在于,数(shu四声) 还有数(shu三声)
数数,从小就学习的东西. 其次,特别是有很多时候在你算出来一道题的时候,你很有成就感.毕竟,其他的东西,比如语文,政治之类,可以有比较笼统的概念.但是数学很多不是,结果,是1 就是1 ,不可能是其他.这让人有成就感,再加上,他是逻辑思维的东西,那种层次,顺序,很好玩.我就是比较喜欢数学.呵呵.当然啊.我不是你说的专家.我还没达到,"家".呵呵! 不过是个人感觉吧.还有,数学在现实生活中的应用很广泛,所以也就更能使人接受其魅力. 呵呵 还有好多.但是就不一一举例了.呵呵! 5 分 拿来吧~ (*^__^*) 嘻嘻

G. 数学的美体现在哪些方面

几乎所有的数学家都认为数学是美的。着名数学家巴拿赫说“数学是最美的,也是最有力的人类创造。”

再给大家看一些图片感受一下;

(转自头条号-数学经纬网)

H. 数学的魅力在哪里

数学至今魅力不减是因为 ,一是数学理论一经确立,基本上不会被推翻,以后只是深化和推广而已,不象其它自然科学分支经常发生新理论取代旧理论的现象。二是它的高度抽象性使它居于比自然界及至其他自然科学更高的层次,自然规律和谐用数学结构表示出来时,已经抓住了最本质的特征,由“形似”到了“神似”的地步。数学史的魅力在于,它是人类文明史中一个非常重要的部分,波澜壮阔,源远流长,奔腾不息。它博精深,令人临川浩叹:“逝者如斯夫!”它精英荟萃。令人心驰神往:“大江东去,浪淘尽千古风流人物”它是数学与哲学、历史等学科的综合,在这个意义上说,它也是最早的边缘科学、交叉科学之一。数学无处不在,我们更赞叹的是它的奇妙和独特——数学魅力。

I. 为什么说数学是美妙的

长期以来,一个令人困惑的现象是:一些同学视数学如畏途,兴趣淡漠,导致数学成绩普遍低于其他学科。这使一些教师、家长乃至专家、学者大伤脑筋!“兴趣是最好的老师。”对任何事物,只有有了兴趣,才能产生学习钻研的动机。兴趣是打开科学大门的钥匙。对数学不感兴趣的根本原因是没有体会到蕴含于数学之中的奇趣和美妙。一个美学家说:“美,只要人感受到它,它就存在,不被人感受到,它就不存在。”对数学的认识也是这样。有人说:“数学真枯燥,十个数字来回转,加、减、乘、除反复用,真乏味!”有人却说:“数学真美好,十个数字颠来倒,变化无穷最奇妙!”认为枯燥,是对数学的误解;感到了兴趣,才能体会到数学的奥妙。其实,数学确实是个最富有魅力的学科。它所蕴含的美妙和奇趣,是其他任何学科都不能相比的。尽管语文的优美词语能令人陶醉,历史的悲壮故事能使人振奋,然而,数学的逻辑力量却可以使任何金刚大汉为之折服,数学的浓厚趣味能使任何年龄的人们为之倾倒!茫茫宇宙,浩浩江河,哪一种事物能脱离数和形而存在?是数、形的有机结合,才有这奇奇妙妙千姿百态的大千世界。数学的美,质朴,深沉,令人赏心悦目;数学的妙,鬼斧神工,令人拍案叫绝!数学的趣,醇浓如酒,令人神魂颠倒。因为它美,才更有趣;因为它有趣,才更显得美。美和趣的和谐结合,便出现了种种奇妙。这也许正是历史上许许多多的科学家、艺术家,同时也钟情于数学的原因吧!数学以它美的形象,趣的魅力,吸引着古往今来千千万万痴迷的追求者。

一、数学的趣味美

数学是思维的体操。思维触角的每一次延伸,都开辟了一个新的天地。数学的趣味美,体现于它奇妙无穷的变幻,而这种变幻是其他学科望尘莫及的。揭开了隐藏于数学迷宫的奇异数、对称数、完全数、魔术数的面纱,令人惊诧;观看了数字波涛、数字漩涡令人感叹!一个个数字,非但毫不枯燥,却生机勃勃,鲜活亮丽!根据法则、规律,运用严密的逻辑推理演化出的各种神机妙算、数学游戏,是数学趣味性的集中体现,显示了数学思维的出神入化!各种变化多端的奇妙图形,赏心悦目;各种扑朔迷离的符形数谜,牵魂系梦;图形式题的巧解妙算,启人心扉,令人赞叹!魔幻迷题,运用科学思维,“弹子会告密”、“卡片能说话”,能知你姓氏,知你出生年月,甚至能窥见你脑中所想,心中所思,真是奇趣玄妙,鬼斧神工。面对这样一些饶有兴味的问题,怎能说数学枯燥乏味呢?

二、数学的形象美

黑格尔说:“美只能在形象中出现。”谈到形象美,一些人便联想到文学、艺术,如影视、雕塑、绘画等等。似乎数学中的数与形只是抽象的孪生兄弟。其实不然。数学是研究数与形的科学,数形的有机结合,组成了万事万物的绚丽画面。

数字美:阿拉伯数字的本身便有着极美的形象:1字像小棒,2字像小鸭,3字像耳朵,4字像小旗。瞧,多么生动。

符号美:“=”(等于号)两条同样长短的平行线,表达了运算结果的唯一性,体现了数学科学的清晰与精确。

“≈”(约等于号)是等于号的变形,表达了两种量间的联系性,体现了数学科学的模糊与朦胧。

“>”(大于号)、“<”(小于号),一个一端收紧,一个一端张开,形象的表明两量之间的大小关系。

{[()]}(大、中、小括号)形象地表明了内外、先后的区别,体现对称、收放的内涵特征。

线条美:看到“⊥”(垂直线条),我们想起屹立街头的十层高楼,给我们是挺拔感;看到“—”(水平线条),我们想起了无风的湖面,给我们的是沉静感;看到“~”(曲线线条),我们想起了波涛滚滚的河水,给我们的是流动感。几何形体中那些优美的图案更是令人赏心悦目。三角形的稳定性,平行四边形的变态性,圆蕴含的广阔性,都给人以无限遐想。脱式运算的“收网式”变形以及统计图表,则是数与形的完美结合。我国古代的太极图,把平面与立体、静止与旋转,数字与图形,更作了高度的概括!

三、简洁美

数学科学的严谨性,决定它必须精练、准确,因而简洁美是数学的又一特色。

数学的简洁美表现在:

1.定义、规律叙述的高度浓缩性,使它的语言精练到“一字千金”的程度。质数的定义是“只有1和它本身两个约数的数”,若丢掉“只”字,便荒谬绝伦;小数性质中“小数末尾的0”中的“末尾”若说成“后面”,便“失之千里”。此种例证不胜枚举。

2.公式、法则的高度概括性。一道公式可以解无数道题目,一条法则囊括了万千事例。

三角形的面积=底×高÷2。把一切类型的三角形(直角的、钝角的、锐角的;等边的、等腰的、不等边的)都概括无遗。“数位对齐,个位加起,逢十进一”把20以内、万以内、多位数的各种整数相加方法,全部包容了进去。

3.符号语言的广泛适用性。

数学符号是最简洁的文字,表达的内容却极其广泛而丰富,它是数学科学抽象化程度的高度体现,也正是数学美的一个方面。a+b=b+aabc=acb=bca,其中a,b,c可以是任何整数、小数或分数。所以,这些用符号表达的算式,既节省了大量文字,又反映了普遍规律,简洁,明了,易记。充分体现了数学语言干练、简洁的特有美感。

四、对称美

对称是美学的基本法则之一,数学中众多的轴对称、中心对称图形,幻方、数阵以及等量关系都赋予了平衡、协调的对称美。略举几例:

算式:

2∶3=4∶6

X+5=17-9

数阵:

数学概念竟然也是一分为二的成对出现的:“整—分,奇—偶,和—差,曲—直,方—圆,分解—组合,平行—交叉,正比例—反比例,显得稳定、和谐、协调、平衡,真是奇妙动人。图形:数学中蕴含的美的因素是深广博大的。数学之美还不仅于此,它贯穿于数学的方方面面。数学的研究对象是数、形、式,数的美,形的美,式的美,随处可见。它的表现形式,不仅有对称美,还有比例美、和谐美,甚至数学的本身也存在着题目美、解法美和结论美。上述这些只是浮光掠影的点点滴滴,然而,也足见数学的迷人风采了。打开这本书,如同进入一个奇妙世界,呈现眼前的尽是数、形变幻的奇妙景观,一个个“枯燥”的数字活蹦乱跳地为你作精彩表演,一个个“抽象”的概念娓娓动听地向你讲述生动的故事。它揭示了隐藏于深层的数学秘密,展示了数学迷宫的绚丽多彩。数的变幻,形的奇妙,有的令你追根究底,有的令你流连忘返,有的令你惊讶感叹,有的令你拍案叫绝,走进这个奇妙世界,必将如咀嚼一枚橄榄果,品尝到数学的浓浓趣味,感受到数学王国神异奇妙,从而使我们眼界大开。你将惊呼:“哇!数学原来是这么有趣啊!”

J. 数学的魅力是什么

数学之为学,有其独特之处。它本身是寻求自然界真相的一门科学,数学家研究大自然所提供的一切素材,寻找它们共同的规律,并用数学的方法表达出来。捕捉大自然的真和美,实际上远远胜过一切人为的造作。

正如“云霞雕色,有逾画工之妙。草木贲华,无待锦匠之奇。夫岂外饰,盖自然耳”。当年我锲而不舍、不分昼夜地研究“引力场方程的几何结构”,就如屈原所说,“亦余心之所善兮,虽九死其犹未悔”。

坦白地说,数学的文采,表现于简洁,寥寥数语,便能道出不同现象的法则,甚至在自然界中发挥作用,这就是数学优雅美丽的地方,数学从来没有令我失望。

数学在历史的长河中流淌不息,数学的魅力数不胜数,无处不在。数学的魅力在于它定义的严瑾,逻辑的清晰,结果的完美。不像风一样无法捕捉,不像云一样无法触摸。数学的魅力真真切切,实实在在。我们终将知道,我们必将知道。数学不息,魅力不止。

阅读全文

与数学的魅力表现在哪些方面相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071