导航:首页 > 数字科学 > 数学上的重要问题有哪些方面

数学上的重要问题有哪些方面

发布时间:2022-07-01 16:27:19

Ⅰ 小学数学专业知识答辩问题有哪些内容

小学数学答辩题及参考答案
01 A、义务教育阶段数学课程的基本出发点是什么? 基本出发点是促进学生全面、持续、和谐的发展。
B、数和数字有什么不同? 用来记数的符号叫做数字。常用的数字有四种:阿拉伯数字、中国小写数字、中国大写数字、罗马数字。现在国际通用的数字是阿拉伯数字,他共有以下十个:1、2、3、4、5、6、7、8、9、0。数是由数字组成的。在用位置原则计数时数是有十个数字中的一个或几个根据位置原则排列起来,表示事物的个数或次序。数字是构成数的基础,配上其他一些数字符号,可以表示各种各样的数。
02 A、《标准》明确指出:学习数学不仅要考虑数学自身的特点,更应遵循什么? 更应遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲生经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获的对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进一步的发展。
B、分析并解答下面的文字题 105减去78的差乘15,积是多少? 可以从问题入手分析,要求“积是多少”就要知道两个因数,一个因数15,另一个因数是105减去78的差,所以现求差后求积,即:(105-78)×15
03 A、 请你谈谈义务教育阶段的数学课程应突出体现什么? 义务教育阶段的数学课程应突出的体现基础性、普及和发展性,使数学教育面向全体学生,实现: ??人人学有价值的数学; ??人人都能活的必需的数学; ??不同的人在数学上得到不同的发展。 B、下面各题的商是几位数,确定上的位数有什么规律?
(除数是一位数的除法) 2016÷4 7035÷5 4543÷8 90180÷9 上面各题的商依次是三位数、四位数、三位数、五位数。根据除法法则可找出如下规律:一位数除多位数,如果被除数的前一位小于除数,那么商的位数就比被除数少一。如果被除数的前一位大于或等于除数,那么商的位数就和被除数同样多。
04 A、《数学课程标准》在学生的数学学习内容上有何要求? 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现方式应采用不同的表达方式,以满足多样化的学习要求。
B、根据下面的文字题,从下面各式中选出正确算式,并将其余的算式正确的叙述出来。 252与173的和乘以8,再除以2,商是多少?
(1)(252+173)×(8÷2)
(2)(2)(252+173×8)÷2
(3)(3)(252+173)×8÷2
(4)(4)252+173×8÷2
(5)(3)式正确 (1) 式:252与173的和乘以8除以2的商,积是多少? (2) 式:252加上173乘以8的积,再除以2,商是多少? (3)式:252加上173乘以8除以2,和是多少?
05 A、《数学课程标准》在学生学习数学的方式上有何?
有效的数学学习活动不能单纯的依赖模仿记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。由于学生所处的文化环境、家庭背景和自身思维方式不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
B、举例说明整除和除尽有什么关系?
整除一定是除尽,而除尽不一定是整除。 如:8÷4=2 说8能被4整除 2÷0.2=10 因为0.2是小数,不是自然数,只能说2能被0.2除尽,或0.2能除尽2,不能说整除。
07 A、《标准》要求对数学学习的评价要关注些什么? 对数学学习的评价要关注学生学习的结果,更要关注他们的学习过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度。帮助学生认识自我、建立信心。 B、“整数改写成小数,只要在小数后面添写0就行了。”这种说法对不对?为什么? 不对。整数改写成小数,必须先在小数后面点上小数点,然后再添写0,如果不点小数点,只在整数后面添写0,就把原来的数扩大了10倍、百倍??数值就改变了。所以这种说法是错误的。
08 A、请谈谈现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
B、在研究近似数时,为什么2和2.0不一样?
在研究近似数时,一定要注意精确到那一位。2是精确到个位,2.0是精确到十分位;2.0比2精确。从四舍五入法得到的近似数来考虑,2和2.0不一样。近似数2是由不小于1.5,小于2.5之间的数精确到个位得到的;而近似数2.0是由不小于1.95,小于2.05之间的数精确到十分位得到的;近似数2.0的取值范围比近似数2的取值范围小,所以近似数2.0比2更精确。
09 A、《数学课程标准》将九年的学习时间具体划分为那几个学段?
分为三个阶段:第一学段(1—3年级) 第二学段(4—6)年级 第三学段(7—9年级) B、写出关于小数的两种分类方法。
(1)按整数部分来分类:小数分为纯小数和带小数。
(2)按小数部分的位数来分类:有限小数、无限小数
纯循环小数
混循环小数
不循环小数
10 A、《标准》明确了义务教育阶段数学课程的总体目标,并从四个方面作了进一步阐述,请说出这四个方面。 知识与技能;数学思考;解决问题;情感与态度。
B、教学“分数意义”时为什么要强调“平均”二字?
分数是从测量和等分中得到的,而且只有把物体分成相等的份数,才能得到确定的数。所以在教学“分数意义”时,要强调“平均” 分。分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。学生在叙述时,如果忽落了“平均”二字,也就是说学生只看到了“分”的一面,而忽落了怎样分的一面,这样表示的数可能就不是分数了。而强调“平均分”是把分数限定在“等分”这一范围中进行的,这样表示的分数才叫做分数。所以教学时,要强调“平均”二字。
11 A、请说出《标准》中刻画数学活动水平的过程性目标动词。
《标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的过程性目标动词。
B、分数与除法有什么关系?
分数与除法有以下关系:m÷n=m/n(m、n都是整数且 n≠0)分数与除法比较,分数中的分子相当于除法中的被除数,分母相等于除法中的除数,分数线相等于除号,分数值相等于除得的商。分数与除法的区别是分数是一个数,而除法是一种运算。它们是两个不同的概念。
12 A、请说出《标准》中刻画知识技能的目标动词。
《标准》中使用了“了解(认识)、理解、掌握、灵活运用”等刻画知识技能的目标动词。 B、质数、质因数和互质数三个概念有什么区别?
(1)质数是一个数,如2是质数,7是质数。
(2)质因数虽然也指一个数,但它针对一个合数而言的。例如:7是28的质因数。
(3)互质数不是指一个数,而是指公约数只有一的两数,例如:5和7是互质数,8和9是互质数。
13 A、《标准》将学习内容分为那四个学习领域?
分为:数与代数、空间与图形、统计与概率、实践与综合应用。
B、举例说明为什么一个数的各位上的数的和能被3或9整除,这个数就能被3或9整除?
下面以8235为例来说明。
8235=8000+200+30+5
=8×1000+2×100+3×10+5
=8×(999+1)+2×(99+1)+3×(9+1)+5
=8×999+8+2×99+2+3×9+3+5
=8×999+2×99+3×9+(8+2+3+5)
因为最后一步的前一部分(8×999+2×99+3×9)一定能被3(或9)整除;且与8235无关。所以说,一个数8235各位上数的和8+2+3+5,如果能被3或9整除那么这个数8235就能被3或9整除;如果不能被3或9整除,那么这个数就不能被3(或9)整除。
14 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的数感。你人为数感在教材中主要表现在哪些方面?
主要表现在:理解数的意义;能用多种方法表示数;在具体情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决而选择适当的算法;能估计运算结果,并对结果的合理性作出解释。
B、在分数和比的性质中强调0除外,为什么没有在除法商不变的性质中提出0除外? 因为在分数和比的性质中提到的是分子与分母和前项与后项都乘以或都除以相同的数(0除外),特别强调0除外,就是因为0也是数;而除法商不变的性质中提到的是被除数和除数同时扩大或同时缩小相同的倍数,商不变,倍数不能是0,因此不必提出0除外。
15 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的符号感。你认为符号感在教材中主要表现在哪些方面?
主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
B、同分母分数相加为什么分母不变,分子相加?
分数的计数单位,是把单位“1”平均分后得到的新单位;它随着分母的变化而变化。分母不同的分数,分数单位也不同;同分母分数,分数单位是相同的。分数的分子时表示分数的个数,而不表示每一分的大小,同分母分数相加,即要把几个分数单位与另几个分数单位和并在一起就是分子相加;显然分数单位没有变,即分母不变。例如:2/7+3/7=(2+3)/7 即2个1/7加上3个1/7,等于5个1/7。
16 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的应用意识。你认为应用意识在教材中主要表现在哪些方面?
主要表现在:认识到现实生活中蕴含着大量的数学信息、数学在现实生活中有着广泛的应用,面对实际问题时能主动尝试着从数学的角度运用所学的知识和方法寻求解决问题的策略;面对新的数学知识时,能主动的寻找实际背景,并探索其应用价值。
B、体积、容积、容量有什么异同?
(1)定义不同。体积是物体所占空间的大小;容积、容量是器皿所能容纳物体的体积。 (2) 测量方法不同。计算物体的体积要从物体外面来量,计算容器的容积,容量要从容器的里面来量。如果计算容器构成物体得体积,里外两面都要量。
17 A、《标准》提出:课程内容的学习,强调学生的数学活动,发展学生的推理能力。你认为推理能力在课程内容中主要应表现在那些地方?
主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰地有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论与质疑。
B、侧面积与表面积有什么区别? 侧面积 表面积
表面积就是指物体表面面积的大小,实际上是指物体与空气接触面的大小,侧面积是指物体侧面面积的大小。
18 A、谈谈你对《标准》知识技能目标中“灵活运用”一词的理解?
能综合运用知识,灵活、合理的选择与运用有关的方法完成特定的数学任务。
B、比值与化简比有什么区别?
求比值是求出前项是后项的几倍(或几分之几),方法是前项除以后项,结果是一个数值;化简比是指化成最简整数比,方法是用比的性质,结果得到一个比。
19 A、谈谈你对《标准》过程性目标中“体验”一词的理解?
参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验。
B、下面这样求最小公倍数是否正确?为什么?
2 60 18 24
3 30 9 12
10 3 4
∴60、18和24的最小公倍数是:2×3×3×10×4=720
不正确。因为用短除法求三个数的最小公倍数,必须除到三个数两两互质为止;而题中仅除到三个得数互质就停止了,这时其中的10和4两个得数还有公约数2,所以题中求的不是最小公倍数。
20 A、请简单谈谈义务教育阶段的数学学习,学生能够达到的总 目标。
1、获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。 2、初步学会用数学思维的方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。 3、体会数学与自然及人社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。 4、具有初步的创新精神和实践能力,在情感与态度和一般能力方面都能得到充分的发展。
B、学生作业中出现“1/3+3/4=4/7”教师应如何处理?
学生出现这个错误的原因是对异分母加减法没有真正理解。这就要求教师引导学生分析1/3和3/4的分数单位不同,教学时,可以画图使学生直观地看到1/3分数单位和3/4的分数单位是不同的。因而不能直接相加减,首先要统一分数单位,统一分数单位的方法是通分;通分之后也只是把分子进行相应的加、减运算,而分母不变(即按分母加减法的法则进行计算)。
21 A、请简单说说你对“数学思考”这一课程目标的理解。
答:1、经历运用数学符号和图形描述现实世界的过程,建立初步数感和符号感,发展抽象思维。 2、丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。 3、经历运用数据描述信息、作出推断的过程发展统计观念。 4、经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理的、清晰的阐述自己的观点。
B、 刚入学的小学生在写10以内的数时易犯什么样的错误?
常会出现如下错误:①把上、下、左、右的位置搞错; ;②写数字的笔画不到位,拐弯处不圆滑;③笔画错误,如把8写成;④笔顺错误,如写8时,笔顺写成 ;⑤数字各部分的比例掌握的不好。
为了使学生正确的书写数字,教学时首先引导学生观察字形:①使学生认识到:0、1、2、3、6、7、8、9这些数字都是一笔写成的,4、5两个数字有两笔写成。②1、4、7是由直线条组成,3、0、6、8由直线条和曲线条组成。
其次,科学的教授写数字的一般步骤:看示范书写讲笔顺,描虚线,独立书写。还可以利用口诀说明数字的形状,5像小称勾,8像麻花,6像小口哨,9像气球带飘绳??
22 A、请简单说说你对“情感与态度”这一课程目标的理解。
1、能积极参与数学学习活动,对数学又好奇心和求知欲。 2、在数学活动中获得成功体验,锻炼克服困难的意志,建立 自信心。 3、初步认识数学与人类社会的密切联系及对人类历史的发展作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 4、形成实事求是的态度以及进行质疑和独立思考的习惯。
B、在一年级讲数的组成时,为什么不能说0和几组成几?
在一年级讲数的组成时,是指一个数里含有多少个自然 单位。因为0不是自然数的计数单位,且不含有计数单位,所以讲数的组成时都不包括0。
23 A、统计与概率研究的内容有哪些?
“统计与概率”主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据的收集、整理、描述和分析以及对事件发生的可能性的刻画,来帮助人们做出合理的推断和预测。
B、比和比分有什么区别?
比是两个数相除,当然是除数不能为0的。因此,比的后项也是不能为0的。比是指两个数的比(倍比)。
比分是指一场比赛的结果,反映胜负的得分情况。得分的后项可以是0,也可以不是0。
24 A、你如何认识《标准》中的四个学习领域之间的关系?
“数与代数”、“空间与图形”、“统计与概率”三部分,是实践与综合应用的基础。“实践与综合应用”将帮助学生综合应用已有的知识和经验,经过自主探索和合作交流,解决与生活密切联系的,具有一定挑战性的综合性的问题,以发展他们解决问题的能力,加深对“数与代数”、“空间与图形”“统计与概率”内容的理解,体会各部分内容之间的联系。
B、怎样教学“小数的意义”?
答:教学“小数的意义”时,大体可以从以下三个方面进行:
① 通过讲解小数的产生是学生了解小数的意义。② 从小数与分数的关系来讲解。 ③从对整数和小数的数位顺序表的掌握中进一步理解小数 的意义。这里要向学生讲清: ①整数和小数的基本单位都是“1”。不论表示整数还是表示 小数个位必须表示出来。 ②各个数位的位置及小数点的作用。③各个数位的计数单位及单位间的进率关系。
25 A、新课程对教师的角色要求是多方面的。请简单谈谈教师角色的转变主要有哪些? 1、由传统的知识传授者向新课程条件下的知识传授者的变化。 2、教师成为学生的促进者。 3、教师成为研究者。
B、教学“11——20各数的认识”时,学生常把12误写成21,为了防止学生出现这种情况,你怎样处理?
在教学时,要着中强调数位的意义。可根据低年级学生的特点,把书上的方格图做成教具,通过左右两边放的方格数量来说明。另外,还要通过学生操作学具来进一步巩固数位的初步认识。
26 A、 教师是促进学生自主学习的“促进者”。请谈谈“促进者” 这种角色的特点。
(1)积极的旁观。(2)给学生以心理上的支持。(3)注重培养学生的自律能力。
B、怎样教学万以内数的读法和写法?
教学万以内数的读法和写法的关键是熟记数位,所以教学中一定要牢牢地把握这一关键。教学万以内数的读法和写法时,必须让学生理解数位的概念,熟记各数位的计数单位及其位置。在组织学生进行读数和写数练习时,要特别注意学生对中间和末尾有0的数的读法和写法的掌握情况,及时纠正学生出现的错误。
27 A、《标准》在内容标准中仅规定了学生在相应的学段应该达到的( )水平,同时,并不规定内容的呈现( )和( ),教材可以有多种编排方式。
基本水平;顺序;形式。
B、怎样教学简单的“有余数的除法”?
这部分内容的重点是使学生掌握试商的方法,并能迅速的进行计算。以43÷5为例,学生在试商时容易出现的错误有:商7余8,也有的商9。造成这种错误的根本原因使学生对“余数一定比除数小”没有引起足够注意,因此教师在教学时,一定要反复强调并讲清“余数一定要比除数小”的道理。另外,要设计针对性强的练习题,培养学生试商的能力。
28 A、小学常用的教学方法有哪些?
1、讲授法 2、谈话法 3、讨论法 4、观察演示法 5、实验法 6、参观法 7、练习法 8、复习法 9、指导小学生自学法
B、0表示没有吗?到了小学高年级关于0的教学,可以讲到什么程度?
0除了表示一个物体也没有之外,还有许多重要作用: ①表示数位。写数时如果空位,必须用0占位; ②表示起点。如直尺的刻度是从0开始的; ③表示界限。如数轴上0表示正数和负数的分界; ④表示精确度。如3和3.0,这两个数大小相等,精确度却不同。 ⑤用于编号。如车牌号00487,这个车牌号为487,并表明最大号为五位数。
29 A选择教学方法的依据是什么?
选择教学方法应从以下几方面去考虑:1、从教学内容出发。2、从学生的年龄特点和实际出发。3、从教室的教学特点和经验出发。
B、教学时怎样帮助学生建立和理解好单位“1”?
教学时要抓住以下四个环节: ① 通过实例说明单位“1”是可分的任何事物,它不仅可以表 示一个东西,一个计量单位,也可以表示一个物体。 ②单位“1”中的数量可以使任意的。 ③结合教材中的集合图,让学生进一步明确,用分数表示的部分与单位“1”的关系,说明单位“1”和部分是可以转化的,关键是看把谁看作单位“1”。 ④让学生进行找单位“1”的练习。
30 A、教学工作的全过程包括那几个环节:
教学工作的全过程包括五个环节:即:一、备课;二、 上课;三、课外作业的布置与评改;四、课外辅导;五、成绩的考核与评定。
B、红星村修一条公路,原计划每天修20米,30天修完,结果提前6天完成,实际平均每天修多少米? 一名学生是这样例方程解答的:
解:设实际平均每天修X米,根据题意得: X=20×30÷(30-6) X=600÷24 X=25 你如何评价?
用方程解题。从思维角度说,能起到化难为易的作用, 但是,如果仅将“X=”放在一个算术式子的一边,使其成为形式上的方程,实质上还是用算术解法,这样不但没有发挥方程解题的优势,而且还会使本来较繁的算术解法,再添一些麻烦。教学时必须引导学生寻找其它解法,不能简单的一说了事。

Ⅱ 数学上有哪些存在的问题

高考导数压轴题有很多,可以看看。

Ⅲ 日常生活中的数学问题有哪些

一、早在封建社会的中国历法把一昼夜分成一百刻再分十二时,每时八刻三十三秒三十三微三十三纤,永无尽数。而西方国家则把九十六刻分成十二时则无余数,方便计算。

二、旧中国的瓦房,房顶从正中央向房子前后两侧向下倾斜切都是呈现三角形状,三角形具有稳定性被运用在房屋的建设中;现在各种道路建筑桥梁等的建设更是离不开数学。

三、市内里的红绿灯,每隔多久红灯亮一次?一辆车在这段路上行驶时速多少,撞上红灯亮的次数才是最少?最节省时间?一层楼有多高?10米是多长?比你高的人是谁?比你矮的人是谁?和你差不多的是谁? 古今中外出现的很多关于数学与生活的故事,数学涉及的领域实在是太广了。

四、在经济学的应用:银行利率、股票的上涨与下跌、衣服打折等等。

银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。

五、工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及折扣率;

计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题。

(3)数学上的重要问题有哪些方面扩展阅读:

数学源自数千年前人们的生产实践,自古以来就与人类的日常生活密不可分。着名的阿基米德发现的浮力原理,也是从生活中发现的。

传说希伦王召见阿基米德,让他鉴定纯金王冠是否掺假。他冥思苦想多日,在跨进澡盆洗澡时,从看见水面上升得到启示,作出了关于浮体问题的重大发现,并通过王冠排出的水量解决了国王的疑问。

在着名的《论浮体》一书中,他按照各种固体的形状和比重的变化来确定其浮于水中的位置,并且详细阐述和总结了后来闻名于世的阿基米德原理:放在液体中的物体受到向上的浮力,其大小等于物体所排开的液体重量。从此使人们对物体的沉浮有了科学的认识。

初中数学学习有哪些问题

一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

Ⅳ 数学界的七大难题是什么

21世纪数学七大难题
最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣
布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以
下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅
中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女
士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这
样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问
题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与
此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你
可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,
那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个
答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被
看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook
)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样
的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来
形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有
力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些
没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来
说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表
面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸
缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说
,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球
面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体
)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
“千僖难题”之四: 黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的
数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布
并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密
相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。着名的黎曼假设断言,方程z(s)=0的
所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它
对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大
约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学
之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中
所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如
此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学
家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来
没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引
进根本上的新观念。
“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气
式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯
托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的
理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托
克斯方程中的奥秘。
“千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾
经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正
如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一
般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷
通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特
别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(
1)不等于0,那么只存在有限多个这样的点。

Ⅵ 当今数学最重要的问题是什么

)o黎曼假设由德国数学家格奥尔格·弗里德里希·伯恩哈德·黎曼(Geo嗯FriedriehBe七rl卜ard Rie-mann)于1859年提出,自那时以来一直使数学家们干着急。最近,由于数学家们转向物理学寻求顿悟,证明黎曼假设的努力已得到新的强化。 这个假设是黎曼惟一进人数论领域的冒险—数论是数学一个研究整数的分支。此外,数论说明了有关质数的某种真正深刻的东西。诸如么3、5和7等数字除了它们自身和1,没有除数,而且似乎不可预见地出现在实数直线上。古希腊数学家欧几里得证明,质数是无限多的,但问题在于,它们处子什么位置?是否存在一种能告诉你如何找到它们的模式或者规则? 黎曼在其假设中提出了一个描述质数所处位置的公式。它包括一个平面上的一组点,这些点对应使一个等式—采它函数(z etafunction)—等于零的求解方法。他的假设说,所有这些点j口采它函数的零点,都处于单一直线上。

Ⅶ 数学课题学习中的问题一般有哪些方面

具体不知道你所谓的课题学习指的是什么,但还是给你以下建议。几何方面:1.课外导读,圆周率的得来 2.图形变换(翻转、平移、对称和旋转) 3.代数部分 调水问题、租车问题、因式分解十字交叉法、函数图象与不等式结合

Ⅷ 数学学科的重要性表现在哪些方面

一般认为,数学有三个显着特点,这就是抽象性,逻辑严密性,应用广泛性,数学的以上三个特点是互相联系,互相影响,密不可分的,认识数学的以上特点,并注意在中学数学教学中正确把握好数学的特点,具有重要意义。
1.抽象性

所谓抽象就是在思想中分出事物的一些属性和联系而撇开另一些属性和联系的过程。抽象有助于我们撇开各种次要的影响,抽取事物的主要的、本质的特征并在“纯粹的”形式中单独地考察它们,从而确定这些事物的发展规律,数学以高度抽象的形式出现,首先是其研究的基本对象的高度抽象性。数学抽象最早发生于一些最基本概念的形成过程中,恩格斯对此作了极其精辟地论述:“数和形的概念不是从其他任何地方,而是从现实世界中得到来的。人们用来学习计数,也就是作第一次算术运算的十个指头,可以是任何别的东西,但总不是知性的自由创造物。为了计数,不仅要有可以计数的对象,而且还要有一种在考察对象时撇开它们的数以外的其他一切特性的能力,而这种能力是长期以经验为依据的历史发展的结果。和数的概念一样,形的概念也完全是从外部世界得来的,而不是从头脑中由纯粹的思维产生出来的。必须先存在具有一定形状的物体,把这些形状加以比较,然后才能构成形的概念。纯数学是以现实世界的空间形式和数量关系,也就是说,以非常现实的材料为对象的。这种材料以极度抽象的形式出现,这只能在表面上掩盖它来源于外部世界。但是,为了对这些形式和关系能从它们的纯粹形态来加以研究,必须使它们完全脱离自己的内容,把内容作为无关紧要的东西放在一边;这样就得到没有长宽高的点,没有厚度和宽度的线,a和b与x和y,常数和变数;只是在最后才得到知性自身的自由创造物和想象物,即虚数,[1]数的概念,点、线、面等几何图形的概念属于最原始的数学概念。在原始概念的基础上又形成有理数、无理数、复数、函数、微分、积分、n维空间以至无穷维空间这样一些抽象程度更高的概念。从数学研究的问题来看,数学研究的问题的原始素材可以来自任何领域,着眼点不是素材的内容而是素材的形式,不相干的事物在最的侧面,形的侧面可以呈现类似的模式,比如代数的演算可以描述逻辑的推理以至计算机的运行;流体力学的方程也可能出现在金融领域,数学强大的生命力就在于能够把一个领域的思想经过抽象过程的提炼而转移到别的领域,纯数学的研究成果常常能在意想不到的地方开花结果。有些外国数学家由于数学研究对象的抽象性,就认为数学是不知其所云为何物,这种认识是不妥的。

数学科学的高度抽象性,决定数学教育应该把发展学生的抽象思维能力规定为其曰标。从具体事物抽象出数量关系和空间形式,把实际问题转化为数学问题的科学抽象过程中,可以培养学生的抽象能力。

在培养学生的抽象思维能力的过程中,应该注意从现实实际事物中抽象出数学概念的提炼过程的教学,又要注意不使数学概念陷入某一具体原型的探讨纠缠。例如,对于直线概念,就要从学生常见并可以理解的实际背景,如拉紧的线,笔直的树干和电线杆等事物中抽象出这个概念,说明直线概念是从许多实际原型中抽象出来的一个数学概念,但不要使这个概念的教学变成对直线的某一具体背景的探讨。光是直线的一个重要实际原型,但如果对于直线概念的教学陷入到对于光的概念的探究,就会导致对直线概念纠缠不清。光的概念涉及了大量数学和物理的问题,牵涉了近现代几何学与物理学的概念,其中包括对欧几里得几何第五公设的漫长研究历史,非欧几何的产生,以及光学,电磁学,时间,空间,从牛顿力学的绝对时空观,到爱因斯坦的狭义相对论和广义相对论,等等。试图从光的实际背景角度去讲直线的概念,陷入对于光的本质的讨论,就使直线的概念教学走入歧途。应该清楚,光不是直线唯一的实际原型,直线的实际原型是极其丰富的。

在培养中学生的抽象思维能力方面,要注意的一个问题是应根据中学生的年龄心理特点,对中学数学教学内容的抽象程度有所控制,过度抽象的内容对普通中学生来说是不适宜的(如某些近代数学的概念)。另外,对于抽象概念的学习应该以抽象概念借以建立起来的大最具体概念作为前提和基础,否则,具体知识准备不够,抽象概念就成为一个实际内容不多的空洞的事物,学生对于学习这样的抽象概念的重要性和必要性就会认识不足。

2.严密性

所谓数学的严密性,就是要求对于任何数学结论,必须严格按照正确的推理规则,根据数学中已经证明和确认的正确的结论(公理、定理、定律、法则、公式等),经过逻辑推理得到,这就要求得到的结论不能有丝毫的主观臆断性和片面性。数学的严密性与数学的抽象性有紧密的联系,正因为数学有高度的抽象性,所以它的结论是否正确,就不能像物理、化学等学科那样,对于一些结论可以用实验来加以确认,而是依靠严格的推理来证明;而且一旦由推理证明了结论,这个结论也就是正确的。

数学科学具有普遍的严格逻辑性特点,而在数学发展历史中则有许多非常典型的例子。例如,对于无限概念逐步深入的认识,毕达哥拉斯学派对于无理数的发现,牛顿、莱布尼兹的微积分及其严格化,处处连续却处处不可导的函数的构造,集合论悖论的构造,都很好地说明了数学的这种严格的风格和精神。

数学中严谨的推理使得每一个数学结论不可动摇。数学的严格性是数学作为一门科学的要求和保证,数学中的严格推理方法是广泛需要并有广泛应用的。学习数学,不仅学习数学结论,也强调让学生理解数学结论,知道数学结论是怎么证明的,学习数学科学的方法,包括其中丰富蕴涵的严格推理方法以及其他的思维方法。如果数学教学对于一些重要结论不讲证明过程,就使教学价值大为降低。学生也常常因为对于一些重要而基本的数学结论的理解产生困难而不能及时得到教师的指导解惑而对数学学习失去兴趣和信心。根据对于新高中数学课程教学的一些调查,新教材中对于某些公式的推导,某些内容的讲解方面过于简单,不能满足同学的学习要求,特别典型的立体几何中的一些关系判定定理只给出结论,不给出证明,方法上采用了实验科学验证实验结论的方法进行操作确认,就与数学科学的精神和方法不一致,老师们的意见比较多,是日前数学教学实践面临的一个问题。数学教学的一个重要目标是教学生思维的过程与方法,让学生充分认识数学结论的真理性、科学性,发展严密的逻辑思维能力。

严密性程度的教学把握当然应该贯彻因材施教的原则,根据学生和教学实际作调适,数学教材(包括在教师教学用书中)可提供严密程度不同的教学方案,备作选择和参考。例如,对于平面几何中的平行线分线段成比例定理,在实际教学中就可以根据教学实际情况采用三种不同的教学方案,第一种是初中数学教材(如人民教育中学数学室编写的《九年义务教育三年制初级中学教科书几何第二册》)普遍采用的,即从特殊的情形作说理,不加证明把结论推广到一般情形;第二种是用面积方法来得到定理的证明(如任命教育中学数学室编写的《义务教育初中数学实验课本几何第二册》的证明方法);第三种则分别就比值是有理数、无理数的不同情况来加以证明,是严密性要求较高,对学生的思维能力要求也较高的一种教学方案(如前苏联的某些初中数学教材的教学要求)。可以肯定,长期不同程度的教学要求的差异也自然导致学生数学能力的较大差异。从培养人才的角度认识,当然应该为不同的学生设计不同的教学方案,才能有利于学生得到充分的发展。

此外,数学科学中逻辑的严密性不是绝对的,在数学发展历史中严密性的程度也是逐步加强的,例如欧几里得的《几何原本》曾经被作为逻辑严密性的一个典范,但后人也发现其中存在不严格,证明过程中也常常依赖于图形的直观。在中学数学教学中培养学生逻辑思维能力的问题上,要注意严密的适度性问题,在这方面,我国中学数学教材工作者和广大教师在初等数学内容的教学处理上作了许多研究,许多处理方式反映了中学生的认识水平,具有重要价值,例如,中学代数教学中许多运算性质的教学,其逻辑严格性不可能达到作为科学意义下数学理论的严格程度,一直以来的处理方法是基本合理的。

此外,在数学教学上追求逻辑上的严密性需要有教学时间的保证,中学生学习时间有限。目前,在实施高中数学新课程以后,各地实际教学反映教学内容多而课时紧的矛盾比较突出,教学中适当地减少了一些对中学生来说比较抽象,或难度较大,或综合性较强的教学内容,使教学时间比较充裕以利于学生消化吸收知识。在目前的高中数学新课程试验中,教学内容的量怎样才比较合理,让一部分高中学生能够学得了的新增的数学选修课内容(尤其是选修系列四的部分专题)切实得到实施,以贯彻落实新高中课程的多样性和选择性,也是值得继续探讨的重要问题。

与此相关的一个问题,数学教学要处理好过程与结果的关系。学习数学基本而重要的日标是会解决各种问题,过分地强调数学教学中的逻辑与证明又会导致知识面不宽,以致对于许多影响深远、应用广泛的数学方法了解不够。这说明,数学教育一方面应该重视逻辑思维能力的培养,还应该重视科学精神的培养,数学思想方法的领会。就数学结论的严格性和严密性,严格和严密的态度是需要的,但是,在一些特定的教学阶段,只要不导致逻辑思维能力的降低,不影响学生对于结论的理解,对于某些类同的数学定理的证明应该可以省略,这应该不会影响数学能力的培养。

其他科学工作为了证明自己的论断常常求助于实验,而数学则依靠推理和计算来得到结论。计算是数学研究的一种重要途径,所以,中学数学教学必须培养学生的数量观念和运算能力。现在的计算工具更加先进,还可以借助于大型的计算系统,这使计算能力可以大大加强。新的高中数学课程增设了算法的内容,充实了概率统计、数据处理的内容,在高中技术课程中又增加了“算法与程序设计”模块,这体现了计算机和信息时代对于培养运算能力的新要求。从目前中学数学实际教学情况看,算法内容的教学由于技术条件的限制而存在落实不够的情况,应该解决教学中存在的实际困难,如算法在计算机上真正实现运算,使教学落到实处,这就涉及计算机语言的问题,但在中学数学课程中直接引入计算机程序设计语言又似乎使中学数学教学的内容过于技术化和专门化,这是值得研究的一个问题。

3.应用广泛性

在日常生活、工作和生产劳动以及科学研究中,数量关系和空间形式方面的问题是普遍存在的,数学应用具有普遍性。数学这门历史悠久的学科,在第二次世界大战以来出现了空前的繁荣。在各分支的研究取得重大突破的同时,数学各分支之间、数学与其他学科之间的新的联系不断涌现,更显着地改变了数学科学的面貌。而意义最为深远的是数学在社会生活的作用的革命性变化,尤为显着的是在技术领域,随着计算机的发展,数学渗入各行各业,并且物化到各种先进设备中。从卫星到核电站,从天气预报到家用电器,新技术的高精度、高速度、高自动、高安全、高质量、高效率等特点,无一不是通过数学模型和数学方法并借助计算机的计算控制来实现的。计算机技术在高新技术中占了很大比重,而技术说到底实际上就是数学技术,数字式电视系统,先进民航飞机的全数字化开发过程,大量的例子说明了,在世界范围数学已经显示出第一生产力的本性,她不但是支撑其他科学的“幕后英雄”,也直接活跃在技术革命第一线。数学对于当代科学也是至关重要的,各门学科越来越走向定量化,越来越需要用数学来表达其定量和定性的规律。计算机本身的产生和进步就强烈地依赖于数学科学的进展。几乎所有重要的学科,如在名称前面加上“数学”或“计算”二字,就是现有的一种国际学术杂志的名字,这表明大量的交叉领域不断涌现,各学科正在充分利用数学方法和成就来加速本学科的发展。关于数学应用的广泛性问题,哈佛大学数学物理教授阿瑟·杰佛(Arthur Jaffe)在着名的长篇论文《整理出宇宙的秩序──数学的作用》(此文是美国国家研究委员会的报告《进一步繁荣美国数学》的一个附录)中作了精辟的论述,他充分肯定了数学在现代社会中的重要作用;“过去的四分之一世纪中,数学和数理技术已经渗透到科学技术和生产中去,并成为其中不可分割的组成部分。在现今这个技术发达的社会里,扫除数学盲’的任务已经替代了昔日扫除文盲’的任务而成为当今教育的重要曰标,人们可以把数学对于我们社会的贡献比喻成空气和食物对于生命的作用。事实上,可以说,我们大家都生活在数学的时代──我们的文化已经数学化。在我们周围,神通广大的计算机最能反映出数学的存在,……,若要把数学研究对我们社会的实用价值写出来,并说明一些具体的数学思想怎样影响这一世界,那就可以写出几部书来。”他指出:“(1)高明的数学不管怎么抽象,它在白然界中最终必能得到实际的应用;(2)要准确地预测一个数学领域到底在那些地方有用场是不可能的。”[2]有许多数学家常常对自己的思想得到的应用感到意外。例如,英国数学家哈代(G H Hardy)研究数学纯粹是为了追求数学的美,而不是因为数学有什么实际用处,他曾自信地声称数论不会有什么实际用处,但四十年后质数的性质成了编制新密码的基础,抽象的数论与国家安全发生了紧密关系。“计算机科学家报告说每一点数学都以这样或那样的方式在实际应用中帮了忙,物理学家则对于数学在自然科学中异乎寻常的有效性’赞叹不已。”

其次,数学教育应该注意培养学生应用数学的意识和能力,这已经成为我国数学教育界的共识。但应该注意的另一方面,数学的应用极其广泛,在中小学有限时间内,介绍数学应用就必须把握好度。数学的应用具有极端的广泛性,任何一个数学概念、定理、公式、法则都有极广的应用。而过量和过度的数学应用问题的教学必然影响数学基础理论的教学,而削弱基础理论的学习又将导致数学应用的削弱。在中学数学教学中,重在让学生初步了解数学在某些领域中的应用,认识数学学习的价值从而重视数学学习。另外,数学的应用也不仅限于具体知识的实际应用,很重要的是一些数学观念和思想在实际工作中的运用。中小学是打基础的时候,所谓打基础主要是打数学基本知识和技能的基础,要让学生有较宽广的数学视野,不应该以在实际中是否直接有用作为标准来决定教学内容的取舍,也不应该要求学生数学学得并不多的时候就去考虑过最的应用问题。初中数学教学实践反映,一些传统的教学内容被删减对于学生数学学习产生了不良影响;高中数学新教材实验回访也反映,高中数学教科书中某些部分实际问题份量“过重”,不少实际问题的例、习题背景太复杂,教学中需花很多时间帮助学生理解实际背景,冲淡了对主要数学知识的学习。实际上,学生参加工作后面临的实际问题会有很大的差异,学生的工作生活背景差异也很大,学生对于实际背景、实际问题的兴趣会有很大的差异,另外实际问题涉及因素常常较多,对于中小学生,尤其是对于义务教育中的学生而言常常显得比较复杂。数学在某一个特殊领域的应用就必然涉及这个领域的许多专门化的知识,对于学生成为较大的困难。此外,学校教育虽然是为学生今后参加工作和生产作的准备,但也不必让学生化过多时间去思考成人阶段才会遇到的一些实际问题,有些实际问题不如留给成年人去考虑。2001年,人民教育中学数学室邀请北京大学数学科学学院田刚教授等谈数学教育的有关问题,他们在谈到对于数学科学及其教学的看法时指出:数学主要还是计算与推理,从数学中能学到的,最重要的是逻辑思维,抽象化的方法,这是一些普遍有用的东西;数学教育中逻辑思维能力的培养要加强,就应用而言,目前的信息技术中就非常需要很强的逻辑思维能力,尤其是编写程序,编程有长有短,短的出错的可能性小一些,怎样才能短一些又解决问题,不出现错误,这就需要逻辑思维;美国进行微积分的教学改革,用高级的图形计算器,能直观地看,用逼近的方法;技术能对直观地把握数学有一定的帮助,不过真正重要、有用的还是用逻辑推导公式;数学教育要教一些基本的东西。

第三方面,数学具有广泛应用,但并非所有学生都会去从事需要很深奥的数学知识的工作,单就直接应用数学的角度而言,不必每个学生都学习很高深的数学理论。普通百姓经常应用的是最基本的数学知识,学习数学很重要的目的是通过学习提高思维能力。所以,在中小学阶段,一方面数学教学要面向全体学生,使人人都有机会获得良好的数学教育,另一方面也应该根据学生的实际和他们的兴趣爱好,根据每个学生的学业、智能发展特长,让不同的学生在不同的方面得到不同的发展,当然,对于规划在科学和技术领域发展的学生必然应该打下良好的数学基础。大家注意到,大量在中学阶段打下了良好数学基础的学生,包括部分国际国内中学数学竞赛中的优胜者,却没有在后续学习阶段继续以数学作为自己的主要发展方向而选择其他的领域,而选择理工科专业的学生常常在大学阶段仍学习很多的数学科学的课程,这也说明了数学应用的广泛性和数学对于学生发展的重要价值。

Ⅸ 当今数学最重要的问题是什么

黎曼假设由德国数学家格奥尔格·弗里德里希·伯恩哈德·黎曼(Geo嗯FriedriehBe七rl卜ard Rie-mann)于1859年提出,自那时以来一直使数学家们干着急.最近,由于数学家们转向物理学寻求顿悟,证明黎曼假设的努力已得到新的强化.这个假设是黎曼惟一进人数论领域的冒险—数论是数学一个研究整数的分支.此外,数论说明了有关质数的某种真正深刻的东西.诸如么3、5和7等数字除了它们自身和1,没有除数,而且似乎不可预见地出现在实数直线上.古希腊数学家欧几里得证明,质数是无限多的,但问题在于,它们处子什么位置?是否存在一种能告诉你如何找到它们的模式或者规则?黎曼在其假设中提出了一个描述质数所处位置的公式.它包括一个平面上的一组点,这些点对应使一个等式—采它函数(z etafunction)—等于零的求解方法.他的假设说,所有这些点j口采它函数的零点,都处于单一直线上.

阅读全文

与数学上的重要问题有哪些方面相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071