导航:首页 > 数字科学 > 初中数学阶段有哪些模型思想

初中数学阶段有哪些模型思想

发布时间:2022-07-01 16:28:25

初中数学模型有哪些

新课标
初中数学建模的常见类型
全日制义务教育数学课程标准对数学建模提出了明确要求,标准强调“从学生以有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解析与应用的过程,进而使学生获得对数学理解的同时,在思维能力。情感态度与价值观等方面得到进步和发展。”强化数学建模的能力,不仅能使学生更好地掌握数学基础知识,学会数学的基本思想和方法。也能增强学生应用数学的意识,提高分析问题,解决实际问题的能力。2007年全国各地的中考试题考查学生建模思想和意识的题目有许多,现分类举例说明。
一、建立“方程(组)”模型
现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决
例1(2007年深圳市中考试题)A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道。已知甲工程队每周比乙工程队少铺设1公里,甲工程对提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?
解:设甲工程队每周铺设管道x公里,则乙工程队每周铺设管道(x+1)公里。
依题意得:
解得x1=2, x2=-3
经检验x1=2,x2=-3都是原方程的根。
但x2=-3不符合题意,舍去。
∴x+1=3
答:甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里。
二、建立“不等式(组)”模型
现实生活建立中同样也广泛存在着数量之间的不等关系。诸如统筹安排、市场营销、生产决策、核定价格范围等问题,可以通过给出的一些数据进行分析,将实际问题转化成相应的不等式问题,利用不等式的有关性质加以解决。
例2 (2007年茂名市中考试题)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元。已知两种球厂家的批发价和商场的零售价如下表,试解答下列问题:
品名 厂家批发价(元/只) 商场零价(元/只)
篮球 130 160
排球 100 120
(1)该采购员最多可购进篮球多少只?
(2)若该商场能把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?
解:(1)该采购员最多可购进篮球x只,则排球为(100-x)只,
依题意得:130x+100(100-x)≤11815
解得x≤60.5
∵x是正整数,∴x=60
答:购进篮球和排球共100只时,该采购员最多可购进篮球60只。
(2)该采购员至少要购进篮球x只,则排球为(100-x)只,
依题意得:30x+20(100-x)≥2580
解得x≥58
由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球平均每天销售40只,
商场可盈利(160-130)×60+(120-100)×40=1800+800=2600(元)
答:采购员至少要购进篮球58只,该商场最多可盈利2600元。
三、建立“函数”模型
函数反映了事物间的广泛联系,揭示了现实世界众多的数量关系及运动规律。现实生活中,诸如最大获利、用料价造、最佳投资、最小成本、方案最优化问题,常可建立函数模型求解。
例3 (2007年贵州贵阳市中考试题)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。
(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式。
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式。
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
解:(1)y=90-3(x-50) 化简,得y=-3x+240
(2)w=(x-40)(-3x+240)
=-3x2+360x-9600
(3)w=-3x2+360x-9600
= -3(x-60)2+1125
∵a=-3<0∴抛物线开口向下
当x=60时,w有最大值,又x<60,w随x的增大而增大,
∴当x=55时,w的最大值为1125元,
∴当每箱苹果的销售价为55元时,可以获得最大利润1125元的最大利润
四、建立“几何”模型
几何与人类生活和实际密切相关,诸如测量、航海、建筑、工程定位、道路拱桥设计等涉及一定图形的性质时,常需建立“几何模型,把实际问题转化为几何问题加以解决
例4 (2007年广西壮族自治区南宁市中考试题)如图点P表示广场上的一盏照明灯。
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离;结果精确到0.1米;参考数据:tan55 °≈1.428,sin55°≈0.819,cos55°≈0.574。
解:(1)如图,线段AC是小敏的影子。
(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ。在Rt△PDQ中,∠PQD=55°,DQ=EQ-ED=4.5-1.5=3(米)。
∵tan55°=
∴PD=3 tan55°≈4.3(米)
∵DF=QB=1.6米
∴PF=PD+DF=4.3+1.6=5.9(米)。
答:照明灯到地面的距离为5.9米。
五、建立“统计”模型
统计知识在自然科学、经济、人文、管理、工程技术等众多领域有着越来越多的应用。诸如公司招聘、人口统计、各类投标选举等问题,常要将实际问题转化为“统计”模型,利用有关统计知识加以解决。
例5 (2007年后湖北省荆州市中考试题)为了了解全市今年8万名初中毕业生的体育升学考试成绩状况(满分为30分,得分均是整数),从中随机抽取了部分学生的体育生学考试成绩制成下面频数分布直方图(尚不完整),已知第一小组的频率为0.12。回答下列问题:
(1)在这个问题中,总体是 ,样本容量为

(2)第四小组的频率为 ,请补全频数分布直方图。
(3)被抽取的样本的中位数落在第 小组内。
(4)若成绩在24分以上的为“优秀”,请估计今年全市初中毕业生的体育升学考试成绩为“优秀”的人数。
解:(1)8万名初中毕业生的体育升学考试 成绩, =500。
(2)0.26,补图如图所示。
(3)三.
(4)由样本知优秀率为 100%=28%
∴估计8万名初中毕业生的体育升学成绩优秀的人数为28%×80000=22400(人)。
六、建立“概率”模型
概率在社会生活及科学领域中用途非常广泛,诸如游戏公平问题、彩票中奖问题、预测球队胜负等问题,常可建立概率模型求解。
例6 (2007年辽宁省中考试题)四张质地相同的卡片如图所示。将卡片洗匀后,背面朝上放置在桌面上。

② 初中数学思想方法主要有哪些

‘2.
分类讨论思想
所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象
本质属性
的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的
思想方式
。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的
互斥
性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导
数学教学
,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高
数学思维
能力。在
初中数学
中需要分类讨沦的问题主要表现个方而:(扮有的
数学概念
、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿
何中
二角形的分类、四边形的分类、角的分类、
圆周角定理

圆幂定理

弦切角定理
等的证明,都涉及到分类i寸论(约解含字毋参数或
绝对值符号
的为一程、不等式、讨论
算术根

正比例和反比例
的数中
二次项系数
、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓
数形结合
是指抽象的
数学语言
与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。着名数学家
华罗庚
说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是
数轴
、函数的图象和
几何图形
等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻
理解数学
概念如教师可以用数轴上点和实数之间的对应
关系来
讲清
相反数
、绝对值的概念以及比较两个数大小的方法;运用
函数图象
的性质讨沦
一元三次方程
的根以及讨论一7
乙一
次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等
数学思想方法
这些
思想力
一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来

③ 初中数学有哪些模型

三角形,矩形,平行四边形!如果您认为这个回答对你有帮助, 请点击回答内容右下方的“…”,再点击“采纳”。多谢了!

④ 初中数学思想方法有哪些

‘2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。着名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来

⑤ 初中数学思想有什么

大概有:方程、函数、分类、整体代入、化规、数形结合、统计、建立数学模型等思想。

⑥ 初中的数学建模思想

数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。

数学建模的过程
1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。

数学建模的意义是:
1、培养创新意识和创造能力
2、训练快速获取信息和资料的能力
3、锻炼快速了解和掌握新知识的技能
4、培养团队合作意识和团队合作精神
5、增强写作技能和排版技术
6、荣获国家级奖励有利于保送研究生
7、荣获国际级奖励有利于申请出国留学

⑦ 初中数学教学中如何培养学生的建模思想

所谓数学模型,就是根据特定的研究目的,采用形式化的数学语言,去抽象地概括地表征所研究对象的主要特征及其关系所形成的一种数学结构。在初中数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。数学模型结构有两个主要特点:其一,它是经过抽象出对象的一些非本质属性以后所形成的一种纯数学关系结构。其二,这种结构是借助数学符号来表示,并能进行数学推演的结构。数学模型思想作为建立数学与外部世界的联系,是学生必须要掌握的基本数学思想之一。1.教学中逐步渗透和建立数学模型思想 学生对模型思想的感悟需要经历一个长期的过程,在这一过程中,学生总是从相对简单到相对复杂,从相对具体到相对抽象,逐步积累经验,掌握建模方法,逐步形成运用模型去进行数学思维的习惯。初中数学模型教学主要是结合相关概念学习,引导学生运用函数、不等式、方程、方程组、几何图形、统计表格等分析表达现实问题。模型思想的感悟应该蕴涵于概念、命题、公式、法则的教学之中,并与数感、符号感、空间观念等培养紧密结合。模型思想的建立是一个循序渐进的过程。 例如,函数思想是一种考虑对应、考虑运动变化、相依关系,以一种状态确定地刻画另一种状态,由研究状态过渡到研究变化过程的思想方法,函数思想的本质在于建立和研究变量之间的对应关系。其中变化的是‘过程’,不变的是‘规律’(关系)。教学中要引导学生去发现规律,并能将规律表述出来,这就是函数思想在教学中的渗透。例如:“体积的问题”,一块长30cm、宽25cm的长方形铁皮,从四个角各切掉一个边长是5cm的正方形,然后做成盒子。这个盒子用了多少铁皮,它的容积是多少?”这个问题就只是一道简单的计算题,但是如果将原题中的规定“切掉边长是5cm的正方形”改为猜想并验证“切掉边长是多少厘米的正方形时,铁盒的容积最大”问题就由静止变得动态起来。借助这样运动、变化的过程,对学生进行函数思想的初步渗透。2.经历“问题情境——建立模型——求解验证”的数学活动过程 “问题情境——建立模型——求解验证”的数学活动过程体现了模型思想的基本要求,也有利于学生在活动过程中理解,掌握有关知识,技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生主动去发现、提出、分析和解决问题,培养创新意识。比如,关于方程的教学,过去我们是从概念到概念,强调的是方程定义、类型解法、同解性讨论等比较“纯粹”的知识、技能,而现在,我们可以让学生从丰富的现实具体问题中,抽象出“方程”这个模型,从而求解具体问题。 数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在初中数学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。在解决问题中,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力。3.改善学习方式促进数学建模教学 数学建模不同于单纯的解题,它是一个综合的过程。这一过程具有问题性,活动性,过程性,搜索性等特点,如下一些学习方式可以在数学建模中加以尝试:(1)小课题学习方式 让学生自主确定课题,设定课题研究计划,完成以后提交课题研究报告。引导学生根据自已的生活经验和对现实情境的观察,提出研究课题。(2)协作式学习方式 在数学建模中可以小组为单位在组内进行合理分工,协同作战,培养学生的合作交流能力。(3)开放式学习方式 在这里的开放是多种意义的,如打破课内课外界限,走入社会,进行数学调查;充分利用网络资源,收集建模有用信息,鼓励对同一问题的不同建模方式。(4)信息技术环境中的学习方式 充分利用计算机的计算功能,展示功能,特有软件包的应用功能等,寻求建模途径,提高数学建模的有效性。

⑧ 初中数学的思想方法有哪些

初中数学的一些思想方法的话,一般会有数形结合,然后几何思想,或者是画图思想。

⑨ 初中的11个数学模型是什么

数与式模型、方程模型、不等式模型、初等函数模型、函数综合模型、辅助线模型、几何变换模型、圆模型、概率统计模型、开放探究模型、阅读理解题模型 ,共11个。

阅读全文

与初中数学阶段有哪些模型思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071