⑴ 数学,在实际生活中的意义是什么为什么!
处处用数学,无处不在,简单的你工资结算,语文数学为什么是主科,因为都无处不在,生活不可或缺,说话打字发信息就是语文,这都是极简单的。稍微困难点的,小区分布建筑绿化车位楼层都是数学。
⑵ 初中数学函数表达的实际意义是什么要如何表达
实际意义是在一个变化过程中(这个重要前提一定要有),当自变量x取一个确定的值时,函数y都有唯一的值与之对应.
表达的方式有三种:解析式法,图像法,列表法.
⑶ 数学实际问题是什么意思
摘要 数学实际问题又称为应用题,主要考察学生的数学知识应用能力,考察学生能否将数学知识应用到现实的实际问题中。
⑷ 学数学实际是学什么
我们学了这么多年的数学,有人不禁要问,我们究竟要学些什么?不容置疑的是,我们要学习数学中的重要的结论,巧妙的技巧和广泛的应用。但我认为, 数学思想 才是数学学习中最重要的一环。 数学从蒙昧时代到古希腊的繁荣,又跨越漫长的中世纪,完成常量数学向变量数学的飞跃,数学思想在其中起着不可磨灭的作用,它是数学灵魂的所在。笛卡儿坐标系思想的提出实现了几何问题的代数化进程,开创了解析几何的先河。他把代数和几何结合起来而使两者都得到极大的发展并且为牛顿发展微积分铺平了道路,使得人类进入变量数学阶段。克莱因观点的提出给出了建立几何学的一种方法,使得各种几何学陆续建立起来,并使其在形式得到统一。克莱因观点在几何学的发展中起到了重大的作用,支配了近半个世纪的几何学研究。 数学思想是人类智慧的结晶,学习数学的思想能够使我们更加深刻的领会到数学的美,使我们更加自由的在数学王国中扬帆前行。我觉得,数学思想的学习应注意以下几个方面: 一.勤于思考 几乎所有的伟大发现都归功于不断的思考。着名科学家牛顿在被问到是什么使得他发现了万有引力定律时,他的回答非常简单:“By thinking on it continually 。 ”只有通过不断的思考,我们的脑袋才能更加灵活,我们的思维才能更加敏捷,我们才能更具创新力。另外在思考的过程中我们应敢于提问题,善于提问题,勤于提问题。 二.善于借鉴 孔子说过:“学而不思则罔,思而不学则殆。”除了不断的思考,我们还需要刻苦努力的学习。一个人的思维总是有限的,多借鉴别人的方法才能使自己的知识更丰富。向老师提问题,和同学一起讨论,多看一些资料都是很好的学习方法。在借鉴别人的思维的过程中我们才能更容易的发现自己的不足,才能使自己的视野更加开阔。 三.善于运用 数学能取得今天这样巨大的成就,这一切都离不开人类经济贸易、自然科学尤其是天文学、物理学等方面研究的需要,理论与实践相结合既是社会发展的需要,也是数学自身发展的需要。运用知识的过程既是熟悉知识的过程又是知识升华的过程。只有通过多运用所学知识解决实际生活中的问题,我们才能更加深刻的体会到数学思想的妙处,领会到那些杰出的数学家们提出这样的思想的原因,从中找到通往数学知识宝库的捷径。 四.勇于创新 在学习的过程中我们必须明确:学习不是为了学习而学习,学习的目的是为了提高自己的创新能力,只有创新才是推动社会进步的动力。在深刻理解大师的思想后,我们自己去解决理论和实际生活中的问题,让聪明的大脑中迸发出智慧的思想火花,为人类社会的发展贡献自己的力量。另外在创新过程中我们要注意到:创新需要想象力。爱因斯坦说过:“ Imagination is more important than knowledge。”像天生爱做梦一样,人也天生喜欢与众不同。多发挥自己的想象力,提出自己独到的见解,让你的思想更具活力! 用思想的火花点缀那贫瘠的土地,我相信你一定会有一种焕然一新的感觉!数学的王国将不再是你想象的那么枯燥,即使在孤独的旅行中你也会感受到无限的乐趣!
⑸ 数学有什么实际作用
数学这门学科,向来一般是以系统、逻辑、精确、严密等形象展示在世人面前。当我们在叙述和解决一个与数学有关问题的时候,追求或得到的结果必须是准确和精确无误。即使是在运用数学知识去解决问题的过程中,无论是语言的表述或是论点的论证,也都需要有理有据的论证。
不过,这也正是数学的伟大和魅力所在之一,当我们去解决问题,必会形成新的知识理论,同时在解决问题的过程中产生新的问题,周而复始,不断循环的推动着数学向前发展。从某个角度来讲,问题的解决促进了数学的形成和发展。
问题的出现,代表着某一事物的内部出现矛盾,或是事物与事物产生了矛盾,而这些矛盾的斗争或解决,需要的正是数学精髓。
因此,从某种意义上来讲,学习数学就是学会如何去解决问题,最终解决了矛盾。
如非常着名的费马大定理:当整数n > 2时,关于x,y,z的不定方程 xn + yn= zn无正整数解。
在早期的数学家手里,他们能够证明n=3、4、5、6……等特殊情况之下的费马大定理是成立,但整数的个数是有无穷多个,一个个去证明是永远算不完,也非常不现实。即使你从n=3开始到一个很大的整数都能连续证明费马大定理都成立,但也许你会碰到一个更大的整数使定理不成立,甚至这样的整数也可能存在着多个的情况等。
此时,摆在所有数学家面前最重要的任务,就是怎么用有限的步骤去解决涉及到无穷的问题,即用一个完整且有限的步骤去证明费马大定理的成立。
进入二十世纪之后,随着计算机技术的不断发展,数学家虽然能借助于计算机完成数量巨大的费马大定理证明,但最终也需要把无穷多的整数归结成有限步骤证明的情形,没有有限的证明步骤过程,所谓的计算机证明也只是一种特例。
因此,所有的数学家和科学家都认识到一点,解决数学问题永远都需要去解决“有限与无穷”这一对立矛盾。一个数学问题只要有“无穷”的存在,那么我们就需要主动去解决它,可以说这也是促进数学发展的根源之一。
从费马大定理的提出到解决,耗费了近三个多世纪的时间,无数的数学家参与其中,如经过包括黎曼、莫德尔等许多数学家前赴后续的工作,把费马大定理与代数曲线上的有理点(坐标都是有理数的点)联系起来,这些种种转化推动了数学相关领域的发展,也推动了费马大定理的证明进程。
英国年轻的数学家怀尔斯利用前人研究并发展起来的椭圆函数理论及其研究成果,最终证明了费马大定理。
费马大定理的证明,不仅给大家提供了解决“有限与无穷”这一矛盾的启示,更提醒世人要想解决问题,有时候需要作一定的变换,如把未解决的问题转化为已知的或易于解决的领域的新问题去解决。
因此,当数学家去处理问题的时候,就会进行加工和创造,形成新的知识理论等。如早期的人类在发明自然数之后,在一定程度上解决了已有问题,但随着社会的不断发展,贸易的往来,就出现了负债的情况。此时,人们为了能更好解决新的问题,就必须创造出像0、负数这些知识概念。
像有理数、无理数、实数、复数等一系列知识的出现,都是因当时社会发展过程中不断产生新的矛盾,发生问题,人们在解决这些问题过程中创造了新的知识理论。
数学史上最着名的矛盾问题,应该就属“三次数学危机”,前两次数学危机已经顺利解决,但第三次数学危机其实并没有完全解决。
第三次数学危机主要是由于在集合理论的边缘发现悖论的存在,加上整个数学王国实质上是建立在集合论的基础之上,它已经渗透到众多的数学分支当中,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
直白的讲,当我们承认无穷集合和无穷基数的时候,就需要解决好“有限和无穷”这一矛盾,要不然很多数学问题就随之而来,这也就是第三次数学危机的本质所在。
数学追求的是解决矛盾,解决问题,说白了是为了没有矛盾。不过,到底什么叫没有矛盾呢?从逻辑学的角度来讲,存在即合理,没有矛盾,但这只是形式逻辑的规律。不过,数学要解决的并不是形式逻辑这么简单,因为还要在“无穷”上证明没有矛盾,而形式逻辑只是从人类有限经验推出来而已。
虽然第三次数学危机表面上已经解决了,但它却以其他形式存在数学当中,我们不能把认为存在矛盾的集合论全部扔掉,因为它们在一些领域当中又有着非常重要的作用。
数学,从来都不怕矛盾,不怕问题,因为随着矛盾和问题的解决,能给数学和其他领域带来许多新的知识内容和认知等,甚至会给人类社会带来革命性的变化。
如人类近两个世纪以来,无论是所取得的数学知识和成就,还是对事物的认识程度等,都比前几个世纪加起来的还要多,特别是在第二次世界大战之后,包括数学在内的很多学科,都迎来大爆发和快速发展,很多新成果层出不穷。
近代数学自从诞生集合论以来,就创造出了抽象代数学、拓扑学、泛函分析与测度论等重要数学分支,特别是像传统的代数几何、微分几何、复分析等,都已经推广到高维层面,如代数数论不断经过很多数学家的完善,已经变得非常完美。
很多时候,一个问题的解决,必将会丰富相关的知识理论,甚至会产生新的问题,这也正是学习和研究数学的本质之一。
⑹ 数学是什么意思
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学分支
1:数学史
2:数理逻辑与数学基础
X轴Y轴(4张)
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科
发展历史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
图中数字为国家二级学科编号.
结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
基础
旋转曲面(8张)
主条目:数学基础
为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
逻辑
主条目:数理逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.
符号
主条目:数学符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含着大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.
严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.
另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
简史
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
中国数学简史
主条目:中国数学史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.
⑺ 数学真正的含义是什么
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使所有的人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ�0�2�0�9(mathematikós)意思是“学问的基础”,源于μ�0�4θημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
⑻ 数学里的实际问题和实际应用是一个意思吗
摘要 实际问题和实际应用基本上是差不多的,但意思上还有细微的差距。
⑼ 数学的含义是什么
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。因此,我们可以学习群、环、域和其他的抽象系统。
把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
应用数学及美学
一些数学只和生成它的领域有关,且用来解答此领域的更多问题。但一般被一领域生成的数学在其他许多领域内也十分有用,且可以成为一般的数学概念。即使是“最纯的”数学通常亦有实际的用途,此一非比寻常的事实,被1963年诺贝尔物理奖得主维格纳称为“数学在自然科学中不可想象的有效性”。
如同大多数的研究领域,科学知识的爆发导致了数学的专业化。主要的分歧为纯数学和应用数学。在应用数学内,又被分成两大领域,并且变成了它们自身的学科——统计学和计算机科学。
许多数学家谈论数学的优美,其内在的美学及美。“简单”和“一般化”即为美的一种。另外亦包括巧妙的证明,如欧几里得对存在无限多素数的证明;又或者是加快计算的数值方法,如快速傅里叶变换。
高德菲·哈罗德·哈代在《一个数学家的自白》一书中表明他相信单单是美学上的意义,就已经足够作为纯数学研究的正当理由。
以上内容参考网络-数学