① 如何提高数学思维能力
数学不是一个恶魔,它是一种另类的艺术。只要把它当作一门文化来学,就对他有了兴趣。希尔伯特把数学定义为游戏,但是这个游戏至少在一个重要的方面是不同于其他游戏的,在数学中,需要一心一意的钻研。学不好数学的人很多,但只要培养起对他的兴趣,一切的问题都会迎刃而解。数学指挥报答那些不仅为了得到报答而且也为了数学而献身,对他感冒的人们。我们或许做不到这一点,但是,学习数学真的是一件需要沉稳的事.数学思维能力只有慢慢积累,积少成多,让各种题型的解法深深地印在脑海里,从而形成数学思维。
思维是一切,一切因他而生一切因他而终。但他却是每个人都具有的,相信假以时日你便可以随心所欲的掌控他。
② 怎么提高数学逻辑思维能力
提到数学思维,很多家长的第一反应就是计算,第二反应可能是还包括图形。其实这种理解是片面的,数学思维能力有很多定义,总结起来就是用数学的观点去思考问题和解决问题的能力。
该资料包里包含1000道数学思维训练题,让你在游戏中开阔思维,提升数学思维能力!
那么该资料包如何获取?
关注【傲梦编程】微信公众号
并在公众号中回复关键字:思维游戏
即可免费领取!
赶紧动手试一试吧!学霸之路已正式敞开!
③ 如何提高数学思维
(1)追根究底,培养思维的深刻性
思维的深刻性指善于透过纷繁复杂的表面现象发现问题本质。在数学教学中,对于概念中的重点字、词,教师要进行强调,并讲清它们的含义;对于数学定理、公理中的条件和结论,要彻底讲清楚,要让学生深刻地理解所学的知识,对所学的知识追根究底,透过现象看本质,抓住问题的本质所在;对于数学中相关联的内容,要引导学生学会对比和类比,使他们通过比较,加深对所学知识的理解,同时也有助于对所学知识的记忆 。
(2)多角度、多层次考虑问题,培养学生思维的广阔性
思维的广阔性指善于全面地考察问题,从事物多种多样的联系和关系中去认识事物。在数学教学中,要教育学生学会多角度、多层次、全面地思维,找到数学知识间的内在联系。我们知道数学知识间的联系是无处不在的,如:一元二次方程、二次函数和一元二次不等式就联系密切;二次函数中,函数值为零就变成了一元二次方程;函数值大于或小于零时,就是一元二次不等式,找到知识间的联系后,就能很快地利用二次函数的图象,解一元二次不等式。在数学教学中不仅要把握数学问题的整体,而且要抓住它的基本特征和特殊因素,找到问题的突破口,从而解决数学问题,这样有利于培养学生思维的广阔性。
(3)活学活用,培养思维的灵活性
思维的灵活性是指能够根据客观条件的发展和变化及时地改变方法,寻找新的解决问题的途径。在数学教学中,教师要让学生在掌握所学知识的同时,还要注意教授学生一些数学的基本思维和方法,如:化归的思维方法、转化的思维方法、比较的方法、形与数互相结合和转化的思维方法,以及在解题时经常用到的分析法和综合法等等,帮助学生在解题时,寻找问题的突破口,抓住问题实质,提高分析问题、解决问题的能力。对于数学中的公式,要让学生知道公式的正用、逆用、变用、活用、巧用及综合运用,能灵活地运用公式,解答数学题。教师要鼓励学生用非常规的方法去解题,大胆尝试,这都有利于培养学生思维的灵活性,要克服思维的呆板,避免循规蹈矩,提高应变能力。
(4)多练精练,培养思维的敏捷性
思维的敏捷性是指思维过程的简缩性和快速性。数学教学中,做题是必不可少的一个重要环节,只有做一定量的题,才能掌握数学知识。教师在教学中,可以通过适当的练习,让学生掌握所学的知识,熟悉所学的公式,学会解题的方法和技巧,能迅速从题中抓住本质,找到解题的关键。练习题要精选,既要达到巩固所学知识的目的,又要避免同一类型的题大量地重复做,只有这样才能做到在解题时,正确地、敏捷地解出答案。
(5)鼓励发散思维,培养思维的创造性
思维的创造性是指独立思考创造出有社会(或个人) 价值的具有新颖性成分的成果的智力品质。创造性思维是创造力的核心。心理学家吉尔福特认为智力结构中的每一种能力都与创新有关,但发散思维与创新的关系最为密切。发散思维是一种开放性的思维。在数学教学中,要启发学生多思考、多提问。勤思善问是创新思维的开始,教师应当允许学生有不同的看法和新见解,对于学生的探索精神以及独到的、新颖的解题方法或解题思路,教师要给予肯定和鼓励。在平时的例题讲解中,采用题型发散、解法发散、纵横发散、变更命题发散、转化发散、迁移发散等多种形式,对学生进行多思、多变、多解的解题辅导,使他们思考问题时,注重多途径、多方案,解决问题时注重举一反三,触类旁通,这对于培养学生思维的创造性至关重要。要让学生在思想上摆脱传统的习惯,多从反习惯、反传统、反常规思路上考虑问题,要提倡做题时,能标新立异、独辟蹊径、推陈出新,这些都有助于提高学生思维的创新能力。
(6)学会检验,培养思维的批判性
思维的批判性是指思考问题时,不受别人暗示的影响,能严格而客观地评价、检验思维的结果的思维品质。在数学教学中,教师不仅要教给学生能解出结果,而且要让他们知道来龙去脉,并教给他们要用各种方式进行检验,要检验自己的结论是否正确、是否符合题意,去伪存真,能够及时找到问题所在,并自行改正,养成检验的好习惯。另外教师在数学教学中,还要针对学生容易出错的地方,讲一些错例辨析题,通过这类型题的比较,让学生发现问题所在,提高他们的辨误水平,避免再犯同样的错误。告诉学生,凡事要自己去思考,不要盲从、不要迷信,有批判地接受,要敢于和善于发现问题,这对提高他们思维的批判性是有益处的。对学生数学思维品质的培养,是数学教学的一项重要任务,它不是一朝一夕的事,数学教师要在传授知识的同时,注意对学生思维品质的培养,提高学生的思维能力,教师要大胆改革教学,提高学生的数学素质。
(7)突出情感教育,激发思维的积极性
①激发学习兴趣。我国数学家王梓坤院士教导我们:“数学教师的职责之一就在于培养学生对数学的兴趣,这等于给了他们长久钻研数学的动力,优秀的数学教师之所以在学生中永志不忘,就是由于他点燃了学生心灵中热爱数学的熊熊火焰。”因此,教师可以利用创设问题情境,利用教学认知矛盾,揭示新旧知识的联系,以数学知识本身的魅力与内在美,用直观的演示实验、精彩的导言来激发学生的学习兴趣。
②根据学生的个体差异,进行差异教学。研究表明,学生的数学思维能力表现出明显的个体差异。因此,教师对优等生要发挥其特长,指出其问题,更上一层楼;对中等生要激发其上进心,创造条件,促使其进步;对差生要热情关心,找出其症结,并采取个别指导的形式,帮助其克服困难,树立信心。总之,教学要面向全体学生,调动每个学生的积极性,让每个学生都在原有的基础上得到充分发展。
(8)注重数学语言教学,提高思维精度
语言是思维的载体,思维需要用语言或文字表述。着名科学家爱因斯坦认为:“一个人的发展和他形成概念的方法很大程度上是取决于语言。”数学语言是进行数学思维和数学交流的工具。数学语言水平的高低,在一定程度上影响着数学思维的发展。所以,在数学教学中要充分认识数学语言对思维活动的影响,注重数学语言教学,培养学生用数学语言进行思维的习惯,发展学生的思维能力。在教学中应注意:
①从规范书写与正确表达做起。如果老师对数学概念、术语理解不深刻,语言表达不准确、不规范,甚至出现科学性错误,或者书写格式不合逻辑,出错题或做错解,对学生的影响是难以估量的。因此,老师在课堂教学要做到语言规范,言必有序,言必有理,言必有据。所有言语要合乎一般语法法则和逻辑要求,概念教学要准确到位,清晰明了,推理分析要条理清楚、层次分明。
②鼓励数学交流。在课堂教学中,尽可能多地让学生说,如同位相商、小组讨论、集体讨论、自由议论、自己对自己说、质疑问难、全班评议等。通过交流,可以使学生的思想清晰活跃,思路明确开阔,因果分明,逻辑清楚。
(9)创设情境问题,提供思维空间
①铺垫型情境。教师可以以符合学生认知水平的、富有启发性的、常规问题或已知的数学事实为素材,创设铺垫型情境。通过由浅入深、由此及彼、由正及反等不同的方式,不同层次的联想,变化发展出不同的新问题,从而为各种层次的学生提供广阔的思维空间,这对培养学生思维的开放性和合理推理能力有重要作用。
②认知冲突型情境。教师可以以富有挑战性、探究性,且处于学生认知结构的最近发展区的非常规问题为素材,创设认知冲突性情境,引起学生的认知冲突,激起学生强烈的探究欲望和学习动机。要让学生从解决面临的情境问题出发,不断地分解、转化问题,提出新的有关问题,并通过新问题的解决,最终使情境问题获得解决。
③思维策略型情境。教师可以以思维策略多样、解题方法典型、解题过程能体现某种完整的数学思想方法的问题作为素材,创设思维策略性情境。当学生的思维受阻后,教师可以从不同角度、不同的层次引导学生进行辩证分析,使学生获得不同程度的启发,从而使他们产生不同的解法。同时,教师还可以引导学生对解法或策略进行适用性研究,拓展其使用范围。这对克服思维定势等原因产生的消极影响,拓展思维的深度和广度,优化思维品质,培养思维的灵活性和创造性具有重要作用。
④试误型情境。学生在理解、应用数学知识和方法的过程中,常因各种原因,犯一些似是而非的错误,教师如果能从中选择素材,就可创设试误型情境,借此为学生尝试错误提供时间与空间,并通过反思错误的原因,提出批驳型问题,加深学生对知识、方法的理解和掌握,提高他们对错误的认识与警戒,培养他们思维的批判性和严谨性。这不仅能激发学生饱满的学习热情,促使他们以积极的态度、旺盛的精力主动探索,而且能使他们在情境中沉思、在情境中受感染、在情境中领悟。
(10)引导学生反思,挖掘思维潜力
数学研究本身就是一个不断反思的过程,反思推进了数学的进步。在数学学习中,反思是一种积极的探究行为,是促进知识同化迁移的可靠途径;反思可以沟通新旧知识间的联系,深化对知识的理解;反思能促使学生从不同方面多角度观察事物,质疑问题,有利于创新思维和创造能力的培养。良好的反思能力的形成必将使学生的思维能力得到大大地提升。因此,在教学中,应紧密结合学生的认知活动,适时引导学生进行反思。
①听课反思。在听课过程中,要指导学生学会反思这节课的主要内容与特点、学习的目标、教师思考问题的方法、自己对知识的理解程度,并可要求学生注意捕捉引起反思的问题或提出具有反思性的见解。
②解题反思。这是在解题过程中,反思求解数学问题的思维模式,它通过对问题解答的结论的正确性进行检验或提出疑问、能否将问题进行变式或把当前问题推广到一般情况等问题的追问,使学生对自己思维方式进行有针对性的反思、调控,从而选择最佳解题策略。
③学习习惯反思。指导学生经常反思自己对数学的兴趣、学习信心和能力、学习的态度与情绪、存在的薄弱环节等,学会及时调整自己,改正不良习惯,积极向上,通过引导学生反思使学生的思维能力得到有效的培养和开发。
(11)完善认识结构,优化思维品质
知识是思维的基础,没有一定的知识积累,思维过程就无法进行。学生只有掌握了科学的符合逻辑结构的规律性的知识,才能通过运用这些知识作为分析、综合、判断、推理的基础,实现知识的迁移。因此,要特别重视数学基本概念、基本原理的教学,不仅要讲清每一章节的知识结构,同时,还要注意各学科间知识的横向联系。学生的知识结构越完整,思维的依据就越充分,思维过程就越容易进行。
①注重数学知识的整体性。数学是一门结构化的学科,数学各个分支、各章节内容之间是互相渗透、相互蕴含的,数学知识是充满关系的有机整体。在平时的教学中,既要注意知识面之间的纵向联系,把孤立的知识组成知识链,又要注意知识之间的横向联系,把知识链进一步组成知识网,使学生在头脑里形成一个经纬交织、融会贯通的知识网络,以利于塑造学生良好的认知结构,培养学习的迁移能力,进而从不同角度激活思维的灵活性、独创性。
②揭示知识形成的过程。知识形成过程是构建知识结构的物质基础。首先,要强调揭示知识发生的过程,因为概念的概括与判断及推理过程包含着极丰富的推理方法、思想方法和思维方法,它们是知识结构中的活跃元素。要注意充分地揭示概念提出的背景,引导学生去探索概念的抽象、概括的过程,揭示概念形成的条件和发生过程。其次,要强调知识的发展、深化过程,这是知识形成过程最关键的一环,是数学教学过程的主干。要在学生头脑中织成知识的经纬和网络,垒砌知识的框架与结构。再次,要着眼于知识应用的过程。因为只有在知识的应用过程中,学生才能更深入地了解知识之间的内在联系,才能悟出带有观念性的数学思考,才能有效地从整体上认识数学。实践表明,这样做不仅能够利于学生对概念的记忆、理解和掌握,而且能够锻炼学生善于透过纷繁复杂的表面现象去发现问题的实质,揭示事物的内在联系的能力,从而培养学生思维的深刻性。
③提炼数学思想方法。数学思想方法形成于数学知识结构的建立和数学问题的解决过程中,它具有极高的概括性和包容性。学生一旦掌握它,就能触类旁通,并形成创新能力。因此,数学教学要注重数学思想方法的提炼。
(12)构建数学模式,发展思维能力
数学是研究“量化模式”的科学。数学是充满模式的,法则是模式,一个确定的数学关系是一个模式,算法、规范式也是一个模式。在教学中引导学生构建解题模式,不但可以向学生展示一些典型问题的解决过程,而且向学生提供了大量的“已知的、熟悉的、能解的问题”,为化归思想提供了若干重要的升降基地,成为解决新问题时的新的凭借与依托。因此,建构模式、认识模式、欣赏模式、理解和记忆模式、强化和应用模式,无论对于巩固与应用学生已学的数学知识,还是对培养学生的数学技能都有着不可替代的作用。加强数学模式的教学是信息化社会对数学教育提出的新的要求,它能帮助学生从众多信息中筛选有用的关键信息,提高分析问题的能力。
④ 怎样培养数学思维方式
孩子的数学思维能力要从小开始锻炼,这有助于孩子在学龄前后的智力开发,并且能够影响孩子在今后的数学学习能力,直接影响孩子的数学成绩。
下面就让我们一起来看下,如何有效地培养孩子的数量、计算、分类、集合、时间、空间、对应、排序、抽象和解决这十种思维能力。
01
数量
包括唱数、计数。唱数是1、2、3、4、5……计数是孩子能查清到底是几个,比如几根手指等。这两种家长都比较重视,却常常忽视另一种——测量,包括对刻度、重量等单位的感知。
不妨抽空带孩子拿一个棍子,量量跑道有几棍子长,或拿橡皮量量铅笔盒有多宽,让他知道测量是用一个个单位去量,并且这个单位是统一的,让他能在最简单的测量中理解和感受单位。
02
计算
多数家长可能是掰着指头教孩子算加减法的,这不够。我们不是主张让孩子在小时候一定学会计算多少数,而是在算的过程中,更多地让他去理解,而非死记硬背。
比方说,小明有10颗糖,毛毛有8颗,小明比毛毛多了几颗?豆豆有20颗糖,他分给小朋友8颗,还剩几颗?
虽然都用到减法,但实际不同,前者是比较型,后者是剩余型,家长重要的是帮孩子去理解两者间有什么不同,而非算出最后的结果。
03
分类
想让孩子思维发展,必须重视多元化分类。比如:一个三角形、一个圆形、一个三角形,你会把三角形归属一类;但把这三样变一下,一个蓝色三角形、一个红色圆形、一个红色三角形,除了按形状,也可按颜色,把红的归为一类,这就是多元化分类。
它能更好地锻炼孩子思维的清晰程度。不过,在孩子刚接触一个高的、矮的、粗的、细的等新概念时,可以先单一分类,当这些概念形成后,再开始多元化分类。
04
集合
从小学开始,所有计算、概念都是在集合的基础上产生的,如果集合的概念清楚了,以后解决问题会好很多。
比如:小明10颗糖,毛毛8颗糖,小明的糖和毛毛的糖各是一集合,两集合比较相减,就得出了小明比毛毛多几颗糖。当孩子感知集合以后,就能分析出两种集合之间有何相关或完全不同之处,也有助分类。
05
时间
除认识钟表,让孩子知道这个针走到哪儿是10分钟,要让他感知时间,亲身感受一下多长时间是10分钟。
06
空间
除让孩子感受上下、左右、前后、里外等方位词,还要培养孩子的空间建构能力。
拼积木、拼图等游戏都是在进行空间建构。拼积木是随意的、创造性的、立体的空间建构;拼图前事先就想好要拼一幅什么样的图画,是有目的、平面性的空间建构。
07
对应
小猫对应小狗、小狗对应动物等等,找相同、找关系的对应,是家长常给孩子布置的连线游戏。
除此以外,空间对应就比较欠缺。事实上,老师排座位,在黑板上列一个座位表,下面的同学根据排表找到自己座位,这就是空间对应。
08
排序
现在家长比较重视孩子的循环排序,比如一说三角形、圆形、三角形、圆形,你就知道下面跟着的是三角形、圆形。
但是,还有另一种排序的能力是“第几”,比如小朋友们排排队,从左到右第几,从右到左第几,以及让孩子把一些东西从大到小排序或从高到低排序,这些能增强孩子对序数的感知力,和以后数学学习密切相关。
09
抽象
抽象思维的意义就不再多讲了,怎么培养呢?举一个简单的例子,家长可以问问孩子:“你看妈妈今天和平常穿的衣服有什么不同?”孩子就要通过思考,在提取一个个信息比较后,分析出不同在哪里。
10
解决
数学的最终目的就是解决问题,它绝不像语言那样是用来背的,更多地体现在孩子解决问题的过程当中,过程最重要,结果不是最重要。
因此,让孩子去解决一个问题时,你要给他留下一定空间,让他去思考,自己去琢磨,不求结果。
⑤ 年轻人,怎样提高数学思维
一、做出来不如讲出来,听得懂不如说得通。
做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、图形推理是培养逻辑思维能力最好的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
因此,多训练一些图形推理题,对其逻辑思维很有帮助。
⑥ 如何提高数学思维问题
数学思维涵盖了四大主要思维模式!
正向思考
就是顺着来思考问题,这种思维模式最注重两个点:
一个是步骤感,就是要一步一步的完成思考,不要跳级,顺着事物和问题的发展规律来,并获取阶段性的结论。就比如现在有孩子做数学应用题:"小明每分钟能够跳140下",脑子就下意识知道"我知道了他每分钟的频率。"无论题目后面问什么,你早就读一句就有了结论,顺着路走就来到了答案终点。
第二是建立模型,在课堂上,会有很多的模型图,饼图、折线图、柱状图等等。用已给的条件正着思考,并建立简单的模型。
逆向思考
有的时候,当孩子无法找到入口的时候,不如逆着思考一下。好比如让孩子在1 2 3 4 5 =6在中间的空缺填上运算符号使得等式成立。
如果顺着去想,就会像1至5如何才能变成6,就可能有点难,不知道从那里下手。所以既然结果仅为一个6,不如反着从后面思考吧,前面的1234会得到一个结果,与5运算得出6,那么孩子很容易知道1+5=6,所以只要把前面的1234凑成一个一。四个数凑成一个结果挺简单的吧,以此类推倒着就可以找到答案。
有序思考
十个相同的桃子放进四个一样的箩筐里,到底有多少种放法?
可能孩子一听到会觉得十分简单,但是不按顺序说着说着就会乱了,根本就不能把所有的放法罗列出来。教会孩子按照一定的顺序去从小到大的想,仔细认真才能不漏掉一个答案。
这个题目有很好的延展性,激发孩子的数学思维,我们还可以问"把十个相同的桃子放进四个不同的箩筐里"。这也还联想的一种,我并不倡导题海战术,让孩子学会逻辑思考和关联,数学其实就是万变不离其宗,只要思维是对的,数字怎么变都没关系。
让孩子学会自由提问
中国的家长一般会对放学的孩子问:今天在学校听话吗?而培养出众多诺贝尔获奖者的犹太人家族来讲,他们会问:今天在学校你提问了吗?
自由提问不仅是检测孩子是否了解这个知识点,是否愿意深度的探索这个问题。不要只局限一个点,引导孩子想问什么就问什么。
举个例子:"妈妈,鱼为什么可以在水里生活,但是我们不可以呢?""因为鱼有腮可以吸收水里的氧气,但是我们没有,我们只有肺部只能吸收空气中的氧气!"
"妈妈,是不是所有的一加一都等于一呀?""有的时候又不一定,要具体问题具体分析,你看一堆沙子加上一堆沙子是不是还是一堆大沙子?"
让孩子运用数学思维模式思考,并且学会组织语言的能力。
父母多问孩子开放性的问题
开放性问题不是只回答是与不是,它是让孩子用自己的想法和语言回答。
"你可以罗列出有多少种可能吗?""你觉得这样合适吗?""再想想,是不是还有别的途径?"
运用这样自由开放的问题,让孩子最大程度的打开大脑,放出创新,不再是规规矩矩的回答。正向或者逆向的思维逻辑,让孩子找出不同事务的相同规律,这才是我们最终的目的。
如果你仅仅只是让孩子提高数学成绩为标准,那么孩子的数学思维能力基地就打不牢固,在未来初高中面对难度很大的数学和理科,孩子就会想条溺水的鱼无从适应。锻炼思维方式是长远的部署,决定了孩子未来的高度。
⑦ 怎样提高数学思维
思维是一种技术,是可以训练的;思维又是一种艺术,只能是潜移默化,不能立竿见影。在数学教学中,应注重对学生数学思维的训练,要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。除了根据数学思维的特点来开发学生的数学思维外,我们还可以从以下几方面培养开发学生的数学思维。
(1)追根究底,培养思维的深刻性
思维的深刻性指善于透过纷繁复杂的表面现象发现问题本质。在数学教学中,对于概念中的重点字、词,教师要进行强调,并讲清它们的含义;对于数学定理、公理中的条件和结论,要彻底讲清楚,要让学生深刻地理解所学的知识,对所学的知识追根究底,透过现象看本质,抓住问题的本质所在;对于数学中相关联的内容,要引导学生学会对比和类比,使他们通过比较,加深对所学知识的理解,同时也有助于对所学知识的记忆 。
(2)多角度、多层次考虑问题,培养学生思维的广阔性
思维的广阔性指善于全面地考察问题,从事物多种多样的联系和关系中去认识事物。在数学教学中,要教育学生学会多角度、多层次、全面地思维,找到数学知识间的内在联系。我们知道数学知识间的联系是无处不在的,如:一元二次方程、二次函数和一元二次不等式就联系密切;二次函数中,函数值为零就变成了一元二次方程;函数值大于或小于零时,就是一元二次不等式,找到知识间的联系后,就能很快地利用二次函数的图象,解一元二次不等式。在数学教学中不仅要把握数学问题的整体,而且要抓住它的基本特征和特殊因素,找到问题的突破口,从而解决数学问题,这样有利于培养学生思维的广阔性。
(3)活学活用,培养思维的灵活性
思维的灵活性是指能够根据客观条件的发展和变化及时地改变方法,寻找新的解决问题的途径。在数学教学中,教师要让学生在掌握所学知识的同时,还要注意教授学生一些数学的基本思维和方法,如:化归的思维方法、转化的思维方法、比较的方法、形与数互相结合和转化的思维方法,以及在解题时经常用到的分析法和综合法等等,帮助学生在解题时,寻找问题的突破口,抓住问题实质,提高分析问题、解决问题的能力。对于数学中的公式,要让学生知道公式的正用、逆用、变用、活用、巧用及综合运用,能灵活地运用公式,解答数学题。教师要鼓励学生用非常规的方法去解题,大胆尝试,这都有利于培养学生思维的灵活性,要克服思维的呆板,避免循规蹈矩,提高应变能力。
(4)多练精练,培养思维的敏捷性
思维的敏捷性是指思维过程的简缩性和快速性。数学教学中,做题是必不可少的一个重要环节,只有做一定量的题,才能掌握数学知识。教师在教学中,可以通过适当的练习,让学生掌握所学的知识,熟悉所学的公式,学会解题的方法和技巧,能迅速从题中抓住本质,找到解题的关键。练习题要精选,既要达到巩固所学知识的目的,又要避免同一类型的题大量地重复做,只有这样才能做到在解题时,正确地、敏捷地解出答案。
(5)鼓励发散思维,培养思维的创造性
思维的创造性是指独立思考创造出有社会(或个人) 价值的具有新颖性成分的成果的智力品质。创造性思维是创造力的核心。心理学家吉尔福特认为智力结构中的每一种能力都与创新有关,但发散思维与创新的关系最为密切。发散思维是一种开放性的思维。在数学教学中,要启发学生多思考、多提问。勤思善问是创新思维的开始,教师应当允许学生有不同的看法和新见解,对于学生的探索精神以及独到的、新颖的解题方法或解题思路,教师要给予肯定和鼓励。在平时的例题讲解中,采用题型发散、解法发散、纵横发散、变更命题发散、转化发散、迁移发散等多种形式,对学生进行多思、多变、多解的解题辅导,使他们思考问题时,注重多途径、多方案,解决问题时注重举一反三,触类旁通,这对于培养学生思维的创造性至关重要。要让学生在思想上摆脱传统的习惯,多从反习惯、反传统、反常规思路上考虑问题,要提倡做题时,能标新立异、独辟蹊径、推陈出新,这些都有助于提高学生思维的创新能力。
(6)学会检验,培养思维的批判性
思维的批判性是指思考问题时,不受别人暗示的影响,能严格而客观地评价、检验思维的结果的思维品质。在数学教学中,教师不仅要教给学生能解出结果,而且要让他们知道来龙去脉,并教给他们要用各种方式进行检验,要检验自己的结论是否正确、是否符合题意,去伪存真,能够及时找到问题所在,并自行改正,养成检验的好习惯。另外教师在数学教学中,还要针对学生容易出错的地方,讲一些错例辨析题,通过这类型题的比较,让学生发现问题所在,提高他们的辨误水平,避免再犯同样的错误。告诉学生,凡事要自己去思考,不要盲从、不要迷信,有批判地接受,要敢于和善于发现问题,这对提高他们思维的批判性是有益处的。对学生数学思维品质的培养,是数学教学的一项重要任务,它不是一朝一夕的事,数学教师要在传授知识的同时,注意对学生思维品质的培养,提高学生的思维能力,教师要大胆改革教学,提高学生的数学素质。
(7)突出情感教育,激发思维的积极性
①激发学习兴趣。我国数学家王梓坤院士教导我们:“数学教师的职责之一就在于培养学生对数学的兴趣,这等于给了他们长久钻研数学的动力,优秀的数学教师之所以在学生中永志不忘,就是由于他点燃了学生心灵中热爱数学的熊熊火焰。”因此,教师可以利用创设问题情境,利用教学认知矛盾,揭示新旧知识的联系,以数学知识本身的魅力与内在美,用直观的演示实验、精彩的导言来激发学生的学习兴趣。
②根据学生的个体差异,进行差异教学。研究表明,学生的数学思维能力表现出明显的个体差异。因此,教师对优等生要发挥其特长,指出其问题,更上一层楼;对中等生要激发其上进心,创造条件,促使其进步;对差生要热情关心,找出其症结,并采取个别指导的形式,帮助其克服困难,树立信心。总之,教学要面向全体学生,调动每个学生的积极性,让每个学生都在原有的基础上得到充分发展。
(8)注重数学语言教学,提高思维精度
语言是思维的载体,思维需要用语言或文字表述。着名科学家爱因斯坦认为:“一个人的发展和他形成概念的方法很大程度上是取决于语言。”数学语言是进行数学思维和数学交流的工具。数学语言水平的高低,在一定程度上影响着数学思维的发展。所以,在数学教学中要充分认识数学语言对思维活动的影响,注重数学语言教学,培养学生用数学语言进行思维的习惯,发展学生的思维能力。在教学中应注意:
①从规范书写与正确表达做起。如果老师对数学概念、术语理解不深刻,语言表达不准确、不规范,甚至出现科学性错误,或者书写格式不合逻辑,出错题或做错解,对学生的影响是难以估量的。因此,老师在课堂教学要做到语言规范,言必有序,言必有理,言必有据。所有言语要合乎一般语法法则和逻辑要求,概念教学要准确到位,清晰明了,推理分析要条理清楚、层次分明。
②鼓励数学交流。在课堂教学中,尽可能多地让学生说,如同位相商、小组讨论、集体讨论、自由议论、自己对自己说、质疑问难、全班评议等。通过交流,可以使学生的思想清晰活跃,思路明确开阔,因果分明,逻辑清楚。
(9)创设情境问题,提供思维空间
①铺垫型情境。教师可以以符合学生认知水平的、富有启发性的、常规问题或已知的数学事实为素材,创设铺垫型情境。通过由浅入深、由此及彼、由正及反等不同的方式,不同层次的联想,变化发展出不同的新问题,从而为各种层次的学生提供广阔的思维空间,这对培养学生思维的开放性和合理推理能力有重要作用。
②认知冲突型情境。教师可以以富有挑战性、探究性,且处于学生认知结构的最近发展区的非常规问题为素材,创设认知冲突性情境,引起学生的认知冲突,激起学生强烈的探究欲望和学习动机。要让学生从解决面临的情境问题出发,不断地分解、转化问题,提出新的有关问题,并通过新问题的解决,最终使情境问题获得解决。
③思维策略型情境。教师可以以思维策略多样、解题方法典型、解题过程能体现某种完整的数学思想方法的问题作为素材,创设思维策略性情境。当学生的思维受阻后,教师可以从不同角度、不同的层次引导学生进行辩证分析,使学生获得不同程度的启发,从而使他们产生不同的解法。同时,教师还可以引导学生对解法或策略进行适用性研究,拓展其使用范围。这对克服思维定势等原因产生的消极影响,拓展思维的深度和广度,优化思维品质,培养思维的灵活性和创造性具有重要作用。
④试误型情境。学生在理解、应用数学知识和方法的过程中,常因各种原因,犯一些似是而非的错误,教师如果能从中选择素材,就可创设试误型情境,借此为学生尝试错误提供时间与空间,并通过反思错误的原因,提出批驳型问题,加深学生对知识、方法的理解和掌握,提高他们对错误的认识与警戒,培养他们思维的批判性和严谨性。这不仅能激发学生饱满的学习热情,促使他们以积极的态度、旺盛的精力主动探索,而且能使他们在情境中沉思、在情境中受感染、在情境中领悟。
(10)引导学生反思,挖掘思维潜力
数学研究本身就是一个不断反思的过程,反思推进了数学的进步。在数学学习中,反思是一种积极的探究行为,是促进知识同化迁移的可靠途径;反思可以沟通新旧知识间的联系,深化对知识的理解;反思能促使学生从不同方面多角度观察事物,质疑问题,有利于创新思维和创造能力的培养。良好的反思能力的形成必将使学生的思维能力得到大大地提升。因此,在教学中,应紧密结合学生的认知活动,适时引导学生进行反思。
①听课反思。在听课过程中,要指导学生学会反思这节课的主要内容与特点、学习的目标、教师思考问题的方法、自己对知识的理解程度,并可要求学生注意捕捉引起反思的问题或提出具有反思性的见解。
②解题反思。这是在解题过程中,反思求解数学问题的思维模式,它通过对问题解答的结论的正确性进行检验或提出疑问、能否将问题进行变式或把当前问题推广到一般情况等问题的追问,使学生对自己思维方式进行有针对性的反思、调控,从而选择最佳解题策略。
③学习习惯反思。指导学生经常反思自己对数学的兴趣、学习信心和能力、学习的态度与情绪、存在的薄弱环节等,学会及时调整自己,改正不良习惯,积极向上,通过引导学生反思使学生的思维能力得到有效的培养和开发。
(11)完善认识结构,优化思维品质
知识是思维的基础,没有一定的知识积累,思维过程就无法进行。学生只有掌握了科学的符合逻辑结构的规律性的知识,才能通过运用这些知识作为分析、综合、判断、推理的基础,实现知识的迁移。因此,要特别重视数学基本概念、基本原理的教学,不仅要讲清每一章节的知识结构,同时,还要注意各学科间知识的横向联系。学生的知识结构越完整,思维的依据就越充分,思维过程就越容易进行。
①注重数学知识的整体性。数学是一门结构化的学科,数学各个分支、各章节内容之间是互相渗透、相互蕴含的,数学知识是充满关系的有机整体。在平时的教学中,既要注意知识面之间的纵向联系,把孤立的知识组成知识链,又要注意知识之间的横向联系,把知识链进一步组成知识网,使学生在头脑里形成一个经纬交织、融会贯通的知识网络,以利于塑造学生良好的认知结构,培养学习的迁移能力,进而从不同角度激活思维的灵活性、独创性。
②揭示知识形成的过程。知识形成过程是构建知识结构的物质基础。首先,要强调揭示知识发生的过程,因为概念的概括与判断及推理过程包含着极丰富的推理方法、思想方法和思维方法,它们是知识结构中的活跃元素。要注意充分地揭示概念提出的背景,引导学生去探索概念的抽象、概括的过程,揭示概念形成的条件和发生过程。其次,要强调知识的发展、深化过程,这是知识形成过程最关键的一环,是数学教学过程的主干。要在学生头脑中织成知识的经纬和网络,垒砌知识的框架与结构。再次,要着眼于知识应用的过程。因为只有在知识的应用过程中,学生才能更深入地了解知识之间的内在联系,才能悟出带有观念性的数学思考,才能有效地从整体上认识数学。实践表明,这样做不仅能够利于学生对概念的记忆、理解和掌握,而且能够锻炼学生善于透过纷繁复杂的表面现象去发现问题的实质,揭示事物的内在联系的能力,从而培养学生思维的深刻性。
③提炼数学思想方法。数学思想方法形成于数学知识结构的建立和数学问题的解决过程中,它具有极高的概括性和包容性。学生一旦掌握它,就能触类旁通,并形成创新能力。因此,数学教学要注重数学思想方法的提炼。
(12)构建数学模式,发展思维能力
数学是研究“量化模式”的科学。数学是充满模式的,法则是模式,一个确定的数学关系是一个模式,算法、规范式也是一个模式。在教学中引导学生构建解题模式,不但可以向学生展示一些典型问题的解决过程,而且向学生提供了大量的“已知的、熟悉的、能解的问题”,为化归思想提供了若干重要的升降基地,成为解决新问题时的新的凭借与依托。因此,建构模式、认识模式、欣赏模式、理解和记忆模式、强化和应用模式,无论对于巩固与应用学生已学的数学知识,还是对培养学生的数学技能都有着不可替代的作用。加强数学模式的教学是信息化社会对数学教育提出的新的要求,它能帮助学生从众多信息中筛选有用的关键信息,提高分析问题的能力。
总之,在数学教学中培养学生思维能力是一个复杂的系统工程,是教师教学艺术的体现,是培养开发学生数学思维和创新思维的核心。因此,在教学过程中,教师应紧紧围绕着这一点,从学生的实际出发,结合教学内容,有效地组织课堂教学,积极探索,努力实践,把思维能力的培养切实落到教学工作中去,为培养高素质的高中人才做出自己的贡献。
⑧ 怎么提升数学思维
提升数学思维是需要广泛的涉猎各种数学题型的,只有见过了之后才会想到。所以在平时应该多注重数学习题的练习,这样才会让自己熟能生巧。
⑨ 怎么提高数学思维能力
一,你要透彻的理解你所学的工具,然后熟悉你所学的工具。
二,你要能在面临问题时想起该用哪个工具。大量的做题很必要,每做一题,你在同时需要找出,解决这道题用了哪本书,哪一张哪一页的哪个知识点。
以及分析,题目里的那句话,哪个词,哪些数据表现出你应该用这个知识点,如果有两种以上知识都可以用来解这道题,哪一种更好,为什么?
通常来说,大学以下教育数学好的人具有这么几个特性,1,对知识点熟悉到无需翻书就可以写出来。2,脑子里通常都有一套筛选机制,可以快速排除掉绝大多数错误的或者繁琐的方法,迅速想到用来解题的知识点。3,如果暂时想不出方法直接解题,敢于通过一些方法对题目进行一定的转换,从而转换成自己会解的题目。