‘壹’ 数学 十字相乘法 计算
十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式
的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)
然后按斜线交叉相乘、再相加,若有
,则有
,否则,需交换
的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。
在我们做因式分解题时,可以参照下面的口诀:
首先提取公因式,然后考虑用公式;
十字相乘试一试,分组分得要合适;
四种方法反复试,最后须是连乘式。
十字相乘法解题实例:
1)、
用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为
1
-2
1
╳
6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解:
因为
1
2
5
╳
-4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:
因为
1
-3
1
╳
-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3
x2=5
例4、解方程
6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解:
因为
2
-5
3
╳
5
所以
原方程可变形成(2x-5)(3x+5)=0
所以
x1=5/2
x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,
18y²可分为y.18y
,
2y.9y
,
3y.6y
解:
因为
2
-9y
7
╳
-2y
所以
14x²-67xy+18y²=
(2x-9y)(7x-2y)
例6
把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x
-(28y²-25y+3)
4y
-3
7y
╳
-1
=10x²-(27y+1)x
-(4y-3)(7y
-1)
=[2x
-(7y
-1)][5x
+(4y
-3)]
2
-(7y
–
1)
5
╳
4y
-
3
=(2x
-7y
+1)(5x
+4y
-3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y
-1),再用十字相乘法把10x²-(27y+1)x
-(4y-3)(7y
-1)分解为[2x
-(7y
-1)][5x
+(4y
-3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x
-7y)(5x
+4y)-(x
-25y)-
3
2
-7y
=[(2x
-7y)+1]
[(5x
-4y)-3]
5
╳
4y
=(2x
-7y+1)(5x
-4y
-3)
2
x
-7y
1
5
x
-
4y
╳
-3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x
-7y)(5x
+4y),再把(2x
-7y)(5x
+4y)-(x
-25y)-
3用十字相乘法分解为[(2x
-7y)+1]
[(5x
-4y)-3].
例7:解关于x方程:x²-
3ax
+
2a²–ab
-b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²-
3ax
+
2a²–ab
-b²=0
x²-
3ax
+(2a²–ab
-
b²)=0
x²-
3ax
+(2a+b)(a-b)=0
1
-b
2
╳
+b
[x-(2a+b)][
x-(a-b)]=0
1
-(2a+b)
1
╳
-(a-b)
所以
x1=2a+b
x2=a-b
‘贰’ 数学十字相乘法的公式是什么
x²+(a+b)x+ab=(x+a)(x+b)
具体步骤:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
乘法的计算法则:
数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐。
凡是被乘数遇到989697等大数联运算时,期法为:被乘数后位按10补加补数,前位遇到9不动,前位遇到6、7、 8时,按9补加补数次数(均由下位补加补数次数),最后被乘数首位减补数一次。
例如:9798x 8679=85036842(8679的补数1321)算序:被乘数个位8的下位加2642,得979-82642。被乘数十位9不动。被乘数百位7的下位加2642,得9-8246842。被乘数的首位减1321,得85036842(乘积)。
‘叁’ 数学中十字相乘法怎么做
你好!
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解
如果本题有什么不明白可以追问,如果满意请点击右上角好评并“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
, 你的采纳是我服务的动力。
祝学习进步!
‘肆’ 数学中十字相乘发怎么算、
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、
用十字相乘法解一些简单常见的题目
例1把:<math>m^2+4m-12
\,\!</math>分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为
1
-2
1
╳
6
所以m^2+4m-12=(m-2)(m+6)
例2把5x^2;+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解:
因为
1
2
5
╳
-4
所以5x^2;+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:
因为
1
-3
1
╳
-5
所以原方程可变形(x-3)(x-5)=0
所以x1=3
x2=5
例4、解方程
6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解:
因为
2
-5
3
╳
5
所以
原方程可变形成(2x-5)(3x+5)=0
所以
x1=5/2
x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,
18y²可分为y.18y
,
2y.9y
,
3y.6y
解:
因为
2
-9y
7
╳
-2y
所以
14x²-67xy+18y²=
(2x-9y)(7x-2y)
例6
把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x
-(28y²-25y+3)
4y
-3
7y
╳
-1
=10x²-(27y+1)x
-(4y-3)(7y
-1)
=[2x
-(7y
-1)][5x
+(4y
-3)]
2
-(7y
–
1)
5
╳
4y
-
3
=(2x
-7y
+1)(5x
+4y
-3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y
-1),再用十字相乘法把10x²-(27y+1)x
-(4y-3)(7y
-1)分解为[2x
-(7y
-1)][5x
+(4y
-3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x
-7y)(5x
+4y)-(x
-25y)-
3
2
-7y
=[(2x
-7y)+1]
[(5x
-4y)-3]
5
╳
4y
=(2x
-7y+1)(5x
-4y
-3)
2
x
-7y
1
5
x
-
4y
╳
-3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x
-7y)(5x
+4y),再把(2x
-7y)(5x
+4y)-(x
-25y)-
3用十字相乘法分解为[(2x
-7y)+1]
[(5x
-4y)-3].
例7:解关于x方程:x²-
3ax
+
2a²–ab
-b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²-
3ax
+
2a²–ab
-b²=0
x²-
3ax
+(2a²–ab
-
b²)=0
x²-
3ax
+(2a+b)(a-b)=0
1
-b
2
╳
+b
[x-(2a+b)][
x-(a-b)]=0
1
-(2a+b)
1
╳
-(a-b)
所以
x1=2a+b
x2=a-b
‘伍’ 数学中的十字相乘法如何使用
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
‘陆’ 因式分解十字交叉法的方法
一、因式分解的基本方法,
1、提取公因式法,
2、公式法(平方差公式和完全平方公式)。
往往在题目中多少会涉及一些其他的知识,例如配方法和十字交叉法等。
二、十字交叉法
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
如图所示:
2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1:把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题 。
因为 :1↖ ↗ - 2
↗↘
1 6
所以m²+4m-12=(m-2)(m+6)
例2:把5x²+6x-8分解因式 。
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题 。
因为: 1↖↗ -2
↗↘
5 -4
所以5x²+6x-8=(x+2)(5x-4)
例3:解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 :1 ↖↗ -3
↗↘
1 - 5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 : 2 ↖↗ -5
↗↘
3 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y ,2y.9y ,3y.6y
因为 :2x ↖↗ -9y
↗↘
7x -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
‘柒’ 十字相乘法怎么算啊
十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法.
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)
然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止.
在我们做因式分解题时,可以参照下面的口诀:
首先提取公因式,然后考虑用公式;
十字相乘试一试,分组分得要合适;
四种方法反复试,最后须是连乘式.
十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7,18y²可分为y.18y ,2y.9y ,3y.6y
因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
‘捌’ 数学中的十字相乘法怎么算的
是凑出来的,将方程二此项系数和常数项分别拆成两个数相乘,例如:解方程: 2 x平方-3x+1=0可以这样拆 成四组 : 2x 1 2x -1 x 1 x -1 x 1 x -1 2x 1 2x -1再将对角相乘的两数相加,若与一次项系数相同就行了解得: (2x-1)(x-1)=0 x=1/2或1
‘玖’ 数学中的十字相乘法是什么
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法能把某些二次三项式分解因式
‘拾’ 数学十字相乘法怎么算
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项