A. 几何形状的数学表达形式有哪些
△,三角形
平行四边形,这个打不出来
○圆
就这几种,其他只能用汉字
B. 大数定律的表现形式
大数定律有若干个表现形式。这里仅介绍高等数学概率论要求的常用的三个重要定律: 切比雪夫大数定理 设 是一列相互独立的随机变量(或者两两不相关) ,他们分别存在期望 和方差 。若存在常数C使得:
则对任意小的正数 ε,满足公式一:
将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。
特别需要注意的是,切比雪夫大数定理并未要求 同分布,相较于后面介绍的伯努利大数定律和辛钦大数定律更具一般性。 伯努利大数定律 设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二:
该定律是切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。
在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。 辛钦大数定律 辛钦大数定律:常用的大数定律
设为独立同分布的随机变量序列,若 的数学期望存在,则服从大数定律:
即对任意的ε>0,有公式三:
大数定律的四种证法
对于一般人来说,大数定律的非严格表述是这样的: 是独立同分布随机变量序列,均值为 ,则 收敛到u.
如果说“弱大数定律”,上述收敛是指依概率收敛(in probability),如果说“强大数定律”,上述收敛是指几乎必然收敛(almost surely/with probability one)。
大数定律通俗一点来讲,就是样本数量很大的时候,样本均值和真实均值充分接近。这一结论与中心极限定理一起,成为现代概率论、统计学、理论科学和社会科学的基石。(有趣的是,虽然大数定律的表述和证明都依赖现代数学知识,但其结论最早出现在微积分出现之前。而且在生活中,即使没有微积分的知识也可以应用。例如,没有学过微积分的学生也可以轻松利用excel或计算器计算样本均值等统计量,从而应用于社会科学。)
最早的大数定律的表述可以追溯到公元1500年左右的意大利数学家Cardano。1713年,着名数学家James (Jacob) Bernouli正式提出并证明了最初的大数定律。不过当时现代概率论还没有建立起来,测度论、实分析的工具还没有出现,因此当时的大数定律是以“独立事件的概率”作为对象的。后来,历代数学家如Poisson(“大数定律”的名字来自于他)、Chebyshev、Markov、Khinchin(“强大数定律”的名字来自于他)、Borel、Cantelli等都对大数定律的发展做出了贡献。直到1930年,现代概率论奠基人、数学大师Kolmogorov才真正证明了最后的强大数定律。
下面均假设 是独立同分布随机变量序列,数学期望为u。独立同分布随机变量和的大数定律常有的表现形式有以下几种。 (1) 带方差的弱大数定律:若 小于无穷,则 依概率收敛到0。
证明方法:Chebyshev不等式即可得到。这个证明是Chebyshev给出的。
(2) 带均值的弱大数定律:若u存在,则 依概率收敛到0。
证明方法:用Taylor展开特征函数,证明其收敛到常数,得到依分布收敛,然后再用依分布收敛到常数等价于依概率收敛。 (3). 精确弱大数定律:若xP(|X|>x) 当x趋于无穷时收敛到0,则 依概率收敛到0,其中。(在这个定理里,不需要u存在。)
证明方法:需要用到截断随机变量. 然后要用的三角阵列的依概率收敛定理和Fubini定理分析积分变换。
(4). 带4阶矩的强大数定律:若小于无穷,则 几乎必然收敛到0.
证明方法:与(1)类似,先用Chebyshev不等式。然后因为4阶矩的存在,得到对任意常数t的收敛速度足够快,满足Borel-Cantelli的要求,用Borel-Cantelli引理得到大数定律。
(5). 带方差的强大数定律:若小于无穷,则 几乎必然收敛到0.
证明方法:用Kolgoromov三级数定理和Kronecker定理。
(6). 精确强大数定律:若u存在,则 几乎必然收敛到0.
证明方法:这个大数定律的证明确实有几种不同的方法。最早的证明是由数学大师Kolmogorov给出的。Durrett (2010)的书上用的是Etemadi (1981)的方法,需要截断X,用到现代概率论的知识如Borel-Cantelli引理、Kolmogorov三级数定理、Fubini定理等。(感谢读者指出,Durrett的书在倒向鞅一章中给出了大数定律的倒向鞅方法证明,只需要用到倒向鞅的知识和Hewitt-Savage 0-1律,不过这也是现代概率论的知识。)
此外,还有很多不同的大数定律,不同分布的,不独立的序列等。定律也不一定是关于随机变量的,也可以是关于随机函数的,甚至随机集合的等等。以数学家命名的也有Khinchin大数定律(不独立序列的强大数定律)、Chebyshev大数定律(弱大数定律(1))、Poisson大数定律(不同概率的随机事件序列的大数定律)、Bernoulli大数定律(随机事件的大数定律)、Kolmogorov大数定律(强大数定律(6))等等……
以上(1-6)是常见的独立同分布序列的大数定律。其中,(3)和(6)是最严格也是最精妙的结果,证明所涉及的高等概率论知识也最多。它们成立的条件不仅是充分条件,也是必要条件,因此它们算是完结了大数定律的发展。大数定律的发展符合数学的一般规律:想证明某一结论,条件越弱(弱大数定律:2阶矩条件->1阶矩条件->没矩条件;强大数定律:4阶矩条件→2阶矩条件→1阶矩条件),证明也就变得越难。
虽然只有(3)和(6)是最精确的结果,但是必须认识到,数学的发展是一个循序渐进的过程,如果没有前面那些更强条件下的定理,也无法得到最后的大数定律。
从最开始的自然界观察到大数定律的存在,到最后证明最终形式,历时数百年,现代概率论也在这个过程中建立起来。此外,虽然(3)和(6)比前面的(1)和(5)强很多,但是(1)和(5)的条件仅仅是2阶矩(或方差)的存在,因此他们在几百年间早就被广泛使用,对于一般的社会科学问题、统计问题等已经足足够用了。
总之,大数定律包含概率论里核心的知识。“大数定律的四种证法”尽管表述模糊,原意也充满调侃,但并不是真如《孔乙己》里回字四种写法所暗示的那样迂腐或毫无价值。作为概率或统计专业的研究生,弄懂这些定理表述的区别和证明方法的区别和联系,了解前代数学家的工作,对于深刻理解现代概率论是很有好处的。当然,任何人也不应去死记硬背这些证法,只要能理解、弄清其中微妙即可。
C. 数字的表示方法有哪些
一、基数词
202表示为:two hundred(and)two
(1)在英式英语中,一个数的最后两位(十位和个位)得用"and'',但美式英语中则不用。如:
3,077(U.S):three thousand,seventy-seven
(2)不定冠词"a"只在数的开头才和hundred,thousand等连用。试比较:
146表示为:a hundred(and)forty-six
2,146表示为:two thousand,one hundred(and)forty-six
(3)1,000这个整数我们说a thousand,在and前我们也说a thousand,但是在一个有百位数的数目前就得说one thousand,试比较:
1,031表示为:a thousand,(and)thirty-one
二、序数词
①lst表示为:(the)first
②2nd表示为:(the)second
③3nd表示为:(the)third
④4th表示为:(the)fourth
⑤20th表示为:(the)twentieth
⑥21st表示为:(the)twenty-first
⑦22nd表示为:(the)twenty-second
⑧23rd表示为:(the)twenty-third
其它以此类推。
三、小数
小数点"."读"point",小数点前按基数词的读法来读,小数点后的数若是两位以上,则分别读出。
①0.5表示为:zero point five
②0.25表示为:zerop point two five
③0.125表示为:zero point one two five
④93,64m表示为:ninety-three point six four meters
⑤2'15.11''表示为:two minutes fifteen point one one seconds
四、年代及日期的表示方法
数字表示的年份通常分成两半来读:
①2000B.C.表示为:two thousand BC
②1558表示为:fifteen fifty-eight
③1603表示为:sixteen(hundred and)three/sixteen oh three
④921表示为:nine twenty-one
对于日期的表达,英式和美式有所不同,请注意区别:英式先写日子,美式先写月份:
英:1999年4月6日=6th April l999
美:1999年4月6日=April 6,1999
在读法上,英国人有两种表达方式:
April the sixth,nineteen ninety-nine/the sixth of April,nineteen ninety-nine
美国人则一般这样表示:
April sixth,nineteen ninety-nine(省略"the")
五、钟点的表示方法
钟点的读法分英式和美式两种,我们应对此加以注意。
英:
①7:00表示为:seven o'clock a.m./p.m.
②8:15表示为:a quarter past eight/eight fifteen
③9:30表示为:half past nine/nine thirty
④9:45表示为:a quarter to ten/nine forty-five
⑤10:03表示为:three(minutes)past ten/ten oh three
美用法基本相似,只是英国用past之处,美国通常用after;英国用to之处,美国常用of,例如:
①5:15表示为:a quarter after five/five fifteen
②9:45表示为:a quarter of ten/nine forty-five
③9:55表示为:five of ten/nine fifty-five
D. 数学美的表现形式
数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。
(一)语言美
数学有着自身特有的语言———数学语言,其中包括:
1 数的语言——符号语言
关于“∏” ,《九章算术》 如斯说:“割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体,而无所失矣”;面对“√2”这一差点被无理的行为淹没的无理数,我们一直难以忘怀那位因发现“边长为1的正方形,其对角线长不能表示成整数之比”这一“数学悖论”而被抛进大海的希帕索斯(公元前五世纪毕达哥拉斯学派成员)。还有sin∂、∞ 等等,一个又一个数的语言,无不将数的完美与精致表现得淋漓尽致。
2形的语言——视角语言
从形的角度来看——对称性(“中心对称”、“轴对称”演绎了多少遥相呼应的缠绵故事);比例性(美丽的“黄金分割法”分出的又岂止身材的绝妙配置?);和谐性(如对数中:对数记号、底数以及真数三者之间的关联与配套实际上是一种怎样的经典的优化组合!);鲜明性(“最大值”、“最小值” 让我们联想起——“山的伟岸”与“水的温柔”,并深切地感悟到:有山有水的地方,为何总是人杰地灵的内在神韵……)和新颖性(一个接一个数学“悖论”的出现,保持了数学乃至所有自然科学的新鲜与活力)等等。
(二)简洁美
爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。
欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?!
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:圆的周长公式:C=2πR
勾股定理:直角三角形两直角边的平方和等于斜边平方 + = 。
正弦定理:ΔABC的外接圆半径R,则
数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。
庞加莱指出:“在解中,在证明中,给我们以美感的东西是什么呢?是各部分的和谐,是它们的对称,是它们的巧妙、平衡”。
(四)、和谐美
美是和谐的.和谐性也是数学美的特征之一.和谐即雅致、严谨或形式结构的无矛盾性.
没有那门学科能比数学更为清晰的阐明自然界的和谐性。
—— Carus,Paul
数论大师赛尔伯格曾经说,他喜欢数学的一个动机是以下的公式: ,这个公式实在美极了,奇数1、3、5、…这样的组合可以给出 ,对于一个数学家来说,此公式正如一幅美丽图画或风景。
欧拉公式: ,曾获得“最美的数学定理”称号。欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。与欧拉公式有关的棣美弗-欧拉公式是 ――(1)。这个公式把人们以为没有什么共同性的两大类函数――三角函数与指数函数紧密地结合起来了。对他们的结合,人们始则惊诧,继而赞叹――确是“天作之合”。
和谐的美,在数学中多得不可胜数。如着名的黄金分割比 ,即0.61803398…。
在正五边形中,边长与对角线长的比是黄金分割比。建筑物的窗口,宽与高度的比一般为 ;人们的膝盖骨是大腿与小腿的黄金分割点,人的肘关节是手臂的黄金分割点,肚脐是人身高的黄金分割点;当气温为23摄氏度时,人感到最舒服,此时23:37(体温)约为0.618;名画的主题,大都画在画面的0.618处,弦乐器的声码放在琴弦的0.618处,会使声音更甜美。建筑设计的精巧、人体科学的奥秘、美术作品的高雅风格,音乐作品的优美节奏,交融于数的对称美与和谐美之中。
黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。达·芬奇称黄金分割比 为“神圣比例”.他认为“美感完全建立在各部分之间神圣的比例关系上”。与 有关的问题还有许多, “黄金分割”、“神圣比例”的美称,她受之无愧。
(四)奇异美
全世界有很大影响的两份杂志曾联合邀请全世界的数学家们评选“近50年的最佳数学问题”,其中有一道相当简单的问题:有哪些分数 ,不合理地把b约去得到 ,结果却是对的?
经过一种简单计算,可以找到四个分数: 。这个问题涉及到“运算谬误,结果正确”的歪打正着,在给人惊喜之余,不也展现一种奇异美吗。
还有一些“歪打正着等式”,比如
人造卫星、行星、彗星等由于运动的速度的不同,它们的轨道可能是椭圆、双曲线或抛物线,这几种曲线的定义如下:到定点距离与它到定直线的距离之比是常数e的点的轨迹,
当e<1时,形成的是椭圆.当e>1时,形成的是双曲线.当e=1时,形成的是抛物线.
常数e由0.999变为1、变为0.001,相差很小,形成的却是形状、性质完全不同的曲线。而这几种曲线又完全可看作不同的平面截圆锥面所得到的截线。
椭圆与正弦曲线会有什么联系吗?做一个实验,把厚纸卷几次,做成一个圆筒。斜割这一圆筒成两部分。如果不拆开圆筒,那么截面将是椭圆,如果拆开圆筒,切口形成的即是正弦曲线。这其中的玄妙是不是很奇异、很美。
(五)对称美
在古代“对称”一词的含义是“和谐”、“美观”。毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。
梯形的面积公式:S= ,
等差数列的前n项和公式: ,
其中a是上底边长,b是下底边长,其中a1是首项,an是第n项,这两个等式中,a与a1是对称的,b与an是对称的。h与n是对称的。
对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。李政道、杨振宁也正是由对称的研究而发现了宇称不守恒定律。从中我们体会到了对称的美与成功。
(六)创新美
欧几里得几何曾经是完美的经典几何学,其中的公理5:“过直线外一点有且只有一条直线与已知直线平行”和结论“三角形内角和等于二直角”,这些似乎是天经地义的绝对真理。但罗马切夫斯基却采用了不同公理5的结论:“过直线外一点至少有两条直线与已知直线平行”,在这种几何里,“三角形内角和小于二直角”,从而创造了罗氏几何。黎曼几何学没有平行线。这些与传统观念相违背的理论,并不是虚无飘渺的,当我们进行遥远的天文测量时,用罗氏几何学是很方便的,原子物理、狭义相对论中也有应用;而爱因斯坦建立的广义相对论中,较多地利用了黎曼几何这个工具,才克服了所遇到的数学计算上的困难。每一个理论都在需要不断创新,每一个奇思妙想、每一个似乎不合理又不可思议的念头都可能开辟新的天地。这种开阔了我们的视野、开阔了我们心胸、给我们完全不同感受的难到不是切入肌肤的美吗?如果我们再大胆设想一下,是不是还存在一个能包容欧氏几何和非欧几何的更广泛的几何学呢?事实上,通过高斯曲率可以将三种几何统一在曲面的内在几何学中,还可以通过克莱因几何学与变换群的观点将三种几何统一起来。在不断创新的过程中,数学得到了发展。
(七)统一美
数的概念从自然数、分数、负数、无理数,扩大到复数,经历了无数次坎坷,范围不断扩大了,在数学及其他学科的作用也不断地增大。那么,人们自然想到能否再把复数的概念继续推广。
英国数学家哈密顿苦苦思索了15年,没能获得成功。后来,他“被迫作出妥协”,牺牲了复数集中的一条性质,终于发现了四元数,即形为a1+a2i+a3j+a4k (a1 ,a2 ,a3 ,a4 为实数)的数,其中i、j、k如同复数中的虚数单位。若a3 =a4 =0,则四元数a1+a2i+a3j+a4k 是一般的复数。四元数的研究推动了线性代数的研究,并在此基础上形成了线性代数理论。物理学家麦克斯韦利用四元数理论建立了电磁理论。
数学的发展是逐步统一的过程。统一的目的也正如希而伯特所说的:“追求更有力的工具和更简单的方法”。
爱因斯坦一生的梦想就是追求宇宙统一的理论。他用简洁的表达式E=mc2揭示了自然界中质能关系,这不能不说是一件统一的艺术品。但他还是没有完成统一的梦想。人类在不断探寻着纷繁复杂的世界,又在不断地用统一的观点认识世界,宇宙没有尽头,统一美也需要永远的追求。
(八)类比美
解析几何中的代数语言具有意想不到的作用,因为它不需要从几何考虑也行。考虑方程 我们知道,它是一个圆。圆的完美形状,对称性,无终点等都存在在哪里呢?在方程之中!例如, 与 对称,等等。代数取代了几何,思想取代了眼睛!在这个代数方程的性质中,我们能够找出几何中圆的所有性质。这个事实使得数学家们通过几何图形的代数表示,能够探索出更深层次的概念。那就是四维几何。我们为什么不能考虑下述方程呢? 以及形如 的方程呢?这是一个伟大的进步。仅仅靠类比,就从三维空间进入高维空间,从有形进入无形,从现实世界走向虚拟世界。这是何等奇妙的事情啊!用宋代着名哲学家程颢的诗句可以准确地描述这一过程:道通天地有形外,思入风云变态中。
(九)抽象美、自由美
从初等数学的基本概念到现代数学的各种原理都具有普遍的抽象性与一般性。正如开普勒所说的:“对于外部世界进行研究的主要目的,在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的”。
数学的第一特征在于她具有抽象思维的能力,在数学中所处理的是抽象的量,是脱离了具体事物内容的用符号表示的量。它可以成为任何一个具体数的代数,但它又不等于任何具体数。比如“N”表示自然数,它不是N个岗位,N只鸡或N张照片……也不是哪一个具体的数,分不清是0 ?是1?或者说100?……“知道”中蕴含着“不知道”,“具体”中充满了“不具体”,它就是这样一个抽象的数!
达·芬奇是15至16世纪的一位艺术大师和科学巨匠。他用一句话概括了他的《艺术专论》的思想:“欣赏我的作品的人,没有一个不是数学家”
历史上不少着名人物都迷恋音乐,大数学家克兰纳克就是一例。一位数学王子何以如此迷恋音乐?原因也许是多方面的,依我看,最重要的一点就是数学和音乐均为一种抽象语言,它们都充满了抽象美、自由美。而且,数学和音乐还是两个人造的金碧辉煌的世界,前者仅用十个阿拉伯数字和若干符号便造出了一个无限的、绝对真的世界,后者仅用五条线和一些蝌蚪状的音符就造出了一个无限的、绝对美的世界。如果说,音乐是人类感情活动最优美的表现,那么数学便是人类理性活动最惊人的产品。
(十)辩证美
熟悉数学的人都体会到在数学中充满着辩证法。如果说各门科学都包含着丰富的辩证思想,那么,数学则有自己特殊的表现方式,即用数学的符号语言以及简明的数学公式能明确地表达出各种辩证的关系和转化。
例如:初等数学中:点与坐标的对应;曲线与方程之间的关系;概率论和数理统计所揭示出的事物的必然性与偶然性的内在联系等。以及高三数学里所涉及的:极限概念,特别是现代的极限语言,很好地体现了有限与无限,近似和精确的辩证关系;牛顿——莱布尼茨公式描述了微分和积分两种运算方式之间的联系和相互转化等等。
这类事例在数学中比比皆是。当然,要真正掌握好“数学美”,仅仅知道一些数学知识还是远远不够的,还必须善于发现各种数学结构、数学运算之间的关系,建立和运用它们之间的联系和转化。唯其如此,才能发挥出蕴藏在数学中的辩证思维的力量。数学中许多计算方法之灵巧,证明方法之美妙,究其思路,往往就是综合利用了各种关系并对他们进行过适宜的转化而成的。
掌握了“两优择其重,两劣择其轻”这一辩证的比较思想,我们就掌握了解这类题目的钥匙。其实,全部数学无处不在贯彻“两优择其重,两劣择其轻”这一原则。数学无处不体现着辩证法,数学家们无时不在用辩证的眼光看问题。陈省身教授80年代在北大讲学时说:“人们常说,三角形内角和等于180°,但是,这是不对的!”……“说三角形内角和为 180°不对,不是说这个事实不对,而是说这种看问题的方法不对。应该说三角形外角和是360°!把眼光盯住内角,只能看到:三角形内角和是180°;四边形内角和是360°;五边形内角和是 540°……n边形内角和是 (n-2)*180°,虽然找到了一个计算内角和的公式,但公式里包含边数n。如果看外角呢?三角形外角和是360°,四边形外角和是 360°,五边形外角和是360°,……,n边形外角和是 360°。
这就把多种情况用一个十分简单的结论概括起来了,用一个与n无关的常数代替了与n有关的公式,找到了更一般的规律。”其实,数学又何尝不是美学?
数学的力量是无穷的,数学美犹如但丁神曲中的诗句,优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾,兴趣盎然!数学之美,还可以从更多的角度去审视,而每一侧面的美都不是孤立的,她们是相辅相成、密不可分的。她需要人们用心、用智慧深层次地去挖掘,更好地体会她的美学价值和她丰富、深隧的内涵和思想,及其对人类思维的深刻影响。如果在学习过程中,我们能与数学家,教师们一起探索、发现,从中获得成功的喜悦和美的享受,那么我们就会不断深入其中,欣赏和创造美。相信我们的数学学习一定能够取得更好的学习效果。
个人简介:高中数学教师,从教十年,发表论文“类比三角公式,寻找解题入口”,“一石激起千层浪”。
采纳我吧!!!
E. 数学抽象的基本形式有哪些
数学抽象的四种形式:
1、实物层面的抽象
这个层面的抽象,实际上是立足于已有的生活经验和社会现实,进行第一步抽象,即以实物为对象进行抽象,到刚刚超越实物而尚未完全脱离实物即结束。例如:在七年级上册《有理数的乘方》这一节中,用文字和图片一起呈现出细胞分裂的过程,细胞每过30min便由1个分裂成2个,经过5h,这种细胞由1个能分裂成多少个?从这样一个有趣的过程中抽象出数学问题,能够很快的激发学生的学习兴趣。在七年级上册《丰富的图形世界》这一节中,教科书提供了几幅图片,引导学生感受图形世界的多姿多彩,并且通过给出各种实物模型,让学生认识圆柱、圆锥、正方体、长方体和球这五种几何体。在八年级下册《图形的旋转》中,呈现出一幅旋转的摩天轮,瞬间把学生带入旋转的情境中去感受旋转,继而思考什么样的图形运动可以称之为图形的旋转。这些都是典型的借助“实物”的直接抽象。在这些过程中,通过设计好的情境,加上教师的有意引导,学生在仔细观察图片中物体的基础上,思考有理数的乘方、几何体、图形的内在本质属性,形成自己对这些知识的初步认识。
2、半符号层面的抽象
这个阶段实际上是简约阶段的一种,是建立在实物抽象的基础之上的进一步发展。此时,有关的属性已经从实物中提取出来、抽象出来,但是并没有完全脱离实物,或者更确切的说,是部分属性脱离了实物,而其中的关键属性已经初见端倪。例如:在七年级下册《单项式乘多项式》这一节中,教科书要求在一幅长x米宽mx米的画左右两边各留1/8x米的空白,求画的面积是多少?接着展示了两种算法,通过对同一面积的不同表达,可以得到: x(mx-1/4x)=mx2-1/4x2 此时单项式乘多项式的有关属性已经呈现出来。在《图形的全等》这一节中,在学生已经了解了什么是全等图形之后,教科书呈现出多个形态各异的图形,要求学生从中找出全等图形,这也是实物直观层面的第二次抽象。在这个过程中,全等图形是能够完全重合的图形这一关键属性已经凸显出来,学生要做的便是依据全等图形的概念来找出能够完全重合的图形。
3、符号层面的抽象
这个层面的抽象属于数学抽象的符号阶段,具有典型的阶段性、层次性。准确的说,符号层面的抽象已经去掉了具体的内容,利用概念、图形、符号、关系表述包括已经简约化了的事物在内的一类事物。例如:在七年级上册《合并同类项》这一节中,观察四组代数式,找出它们的共同特点,然后总结出同类项的概念,并进而得到合并同类项法则。在这个过程中,学生在观察代数式和探索合并同类项及其合并同类项法则的同时,尝试着用文字去表述自己的发现,这就是在进行符号层面的抽象。在八年级上册《勾股定理》的教学上,首先通过探索活动让学生们初步感受直角三角形三边长之间的特殊关系,接着引导学生用语言准确表述这样一种特殊关系,最后赋予直角三角形三边以符号表示,并用符号语言来描述出勾股定理。这样一种礼仪概念、图形、符号表述一类事物的方式就是典型的符号层面的抽象。在这个过程中,学生首先要通过观察“邮票”这一实物对研究勾股定理的这个基本图形形成一个直观认识,在经历分析、猜想、尝试等过程探求两个小直角三角形面积与大直角三角形面积之间的数量关系的方法,最后通过分析、推理得到直角三角形三条边长之间的特殊关系。这样一个过程能够让学生在经历勾股定理的探索过程后,更深刻的认识、理解这个定理。在九年级上册《相似多边形》这一节总,在学生已对相似图形有了最初的直观感受后,通过观察、分析五组形态各异的图形的内在共同特征,总结归纳出相似图形的定义,学生从初步认识相似图形,到深入了解相似图形,这整个过程都参与其中,十分有利于学生对相似图形的全面理解。
4、形式化层面的抽象
这个层面的抽象属于数学抽象的普适阶段,即通过假设和推理建立法则、模式或者模型,并能够在一般意义上解释具体事物。这个阶段的抽象在中小学也是时常存在的。例如:在七年级下册《二元一次方程组》这一节中,基于上一节《二元一次方程》已经完成了从“一元”到“二元”、新的数学模型的建立,该节内容的学习主要集中在类似于“鸡兔同笼”问题的解决上。建立模型后,将模型运用到一般问题的解决上,这一过程是典型的形式化抽象。再比如说,在九年级下册圆周角定理的呈现上,通过猜想、推理得到圆周角与圆心角之间的半倍关系,继而引导学生运用这一关系去解决一些具体的问题。在这一过程中,学生首先要形成对圆周角概念的认识,再在测量同一圆的圆心角和圆周角度数的基础上,大胆猜想圆心角与圆周角的数量关系,接着在教师的引导下逐步形成证明这一关系的思想和方法,最后能够将这一定理熟练地运用到解决实际问题当中。在九年级上册《相似三角形的性质》这一节中,通过深入分析探索得到证明相似三角形、相似多边形的周长比的方法,继而引导学生运用所得方法去尝试解决相似三角形、相似多边形的面积比、高比等,在这个过程中,学生不仅学到解决问题的方法,还知道了将习得的方法用在其他问题的解决上,符合新课标提出的重视“过程与方法”的目标。
总体来看,现行初中教材中情境中采用最多的是实物层面的抽象,正文中采用最多的是符号层面的抽象,练习中采用最多的是实物半符号层面的抽象,数学活动中最多采用的是形式化层面的抽象。
F. Excel中的数学计算表达方式都有哪些
ABS 工作表函数 返回参数的绝对值
ACOS 工作表函数 返回数字的反余弦值
ACOSH 工作表函数 返回参数的反双曲余弦值
ASIN 工作表函数 返回参数的反正弦值
ASINH 工作表函数 返回参数的反双曲正弦值
ATAN 工作表函数 返回参数的反正切值
ATAN2 工作表函数 返回给定的 X 及 Y 坐标值的反正切值
ATANH 工作表函数 返回参数的反双曲正切值
CEILING 工作表函数 将参数 Number 沿绝对值增大的方向,舍入为最接近的整数或基数
COMBIN 工作表函数 计算从给定数目的对象集合中提取若干对象的组合数
COS 工作表函数 返回给定角度的余弦值
COSH 工作表函数 返回参数的双曲余弦值
COUNTIF 工作表函数 计算给定区域内满足特定条件的单元格的数目
DEGREES 工作表函数 将弧度转换为度
EVEN 工作表函数 返回沿绝对值增大方向取整后最接近的偶数
EXP 工作表函数 返回 e 的 n 次幂常数 e 等于 2.71828182845904,是自然对数的底数
FACT 工作表函数 返回数的阶乘,一个数的阶乘等于 1*2*3*...*该数
FACTDOUBLE 工作表函数 返回参数 Number 的半阶乘
FLOOR 工作表函数 将参数 Number 沿绝对值减小的方向去尾舍入,使其等于最接近的 significance 的倍数
GCD 工作表函数 返回两个或多个整数的最大公约数
INT 工作表函数 返回实数舍入后的整数值
LCM 工作表函数 返回整数的最小公倍数
LN 工作表函数 返回一个数的自然对数自然对数以常数项 e(2.71828182845904)为底
LOG 工作表函数 按所指定的底数,返回一个数的对数
LOG10 工作表函数 返回以 10 为底的对数
MDETERM 工作表函数 返回一个数组的矩阵行列式的值
MINVERSE 工作表函数 返回数组矩阵的逆距阵
MMULT 工作表函数 返回两数组的矩阵乘积结果
MOD 工作表函数 返回两数相除的余数结果的正负号与除数相同
MROUND 工作表函数 返回参数按指定基数舍入后的数值
MULTINOMIAL 工作表函数 返回参数和的阶乘与各参数阶乘乘积的比值
ODD 工作表函数 返回对指定数值进行舍入后的奇数
PI 工作表函数 返回数字 3.14159265358979,即数学常数 pi,精确到小数点后 15 位
POWER 工作表函数 返回给定数字的乘幂
PRODUCT 工作表函数 将所有以参数形式给出的数字相乘,并返回乘积值
QUOTIENT 工作表函数 回商的整数部分,该函数可用于舍掉商的小数部分
RADIANS 工作表函数 将角度转换为弧度
RAND 工作表函数 返回大于等于 0 小于 1 的均匀分布随机数
RANDBETWEEN 工作表函数 返回位于两个指定数之间的一个随机数
ROMAN 工作表函数 将阿拉伯数字转换为文本形式的罗马数字
ROUND 工作表函数 返回某个数字按指定位数舍入后的数字
ROUNDDOWN 工作表函数 靠近零值,向下(绝对值减小的方向)舍入数字
ROUNDUP 工作表函数 远离零值,向上(绝对值增大的方向)舍入数字
SERIESSUM 工作表函数 返回基于以下公式的幂级数之和:
SIGN 工作表函数 返回数字的符号当数字为正数时返回 1,为零时返回 0,为负数时返回 -1
SIN 工作表函数 返回给定角度的正弦值
SINH 工作表函数 返回某一数字的双曲正弦值
SQRT 工作表函数 返回正平方根
SQRTPI 工作表函数 返回某数与 pi 的乘积的平方根
SUBTOTAL 工作表函数 返回数据清单或数据库中的分类汇总
SUM 工作表函数 返回某一单元格区域中所有数字之和
SUMIF 工作表函数 根据指定条件对若干单元格求和
SUMPRODUCT 工作表函数 在给定的几组数组中,将数组间对应的元素相乘,并返回乘积之和
SUMSQ 工作表函数 返回所有参数的平方和
SUMX2MY2 工作表函数 返回两数组中对应数值的平方差之和
SUMX2PY2 工作表函数 返回两数组中对应数值的平方和之和,平方和加总在统计计算中经常使用
SUMXMY2 工作表函数 返回两数组中对应数值之差的平方和
TAN 工作表函数 返回给定角度的正切值
TANH 工作表函数 返回某一数字的双曲正切值
TRUNC 工作表函数 将数字的小数部分截去,返回整数
G. 中国传统数学的主要特征是什么从哪些成就表现出来
数学是研究客观事物的空间形式与数量关系的科学。它不受任何时间和空间的限制,强烈地显现这一本质属性。然而,在古代各个时期不同的文化传统中,数学的表现形式往往也不尽相同,各自呈现出自己的特征。比如中国古典数学在表现形式、思维模式、与社会实际的关系、研究的中心以及发展的历程等许多方面与其他文化传统,特别是古希腊数学有较大的区别。
首先是其表现形式,这里主要指数学经典的着作形式。古希腊数学常常采取抽象的公理化的形式,而中国古典数学则是以术文统率例题的形式。两种不同的形式,代表着迥然不同的两种风格。这两种形式和风格同样可以阐发数学理论的基础。有人往往忽略了这一点,把中国古代数学着作笼统地概括成应用问题集的形式。只要仔细分析、比较一下数学着作本身,就不难发现这个结论是极不正确的。比如最重要的着作《九章算术》,它的九章中,方田、粟米、少广、商功、盈不足、方程六章的全部及衰分、均输、勾股三章的部分,要么先列出一个或几个例题,然后给出十分抽象的“术”;要么先列出十分抽象的“术”,然后给出若干例题。这里的“术”都是些公式或抽象的计算程序;前者的例题只有题目及答案,后者的例题则包括题目、答案与“术”。所谓“术”就是阐述各种算法及具体应用,类似于后世的细草。《九章算术》中只有约五分之一的部分,即衰分、均输、勾股三章的约50个题目,可以说是应用问题集的形式。由此就得出《九章算术》是一部应用问题集的结论是不恰当的,正确的提法应是术文统率例题的形式。后来的《孙子算经》等的主体应该说是应用问题集的形式,但把一些预备知识放到了卷首。宋元数学高潮中的着作,贾宪《黄帝九章算经细草》的抽象性更高于《九章算术》,其它着作由于算法更为复杂,算法的抽象性有时达不到《九章》的程度,但是也作了可贵的努力,如《数书九章》的“大衍总数术”及其核心“大衍求一术”就是同余式解法的总术;“正负开方术”用抽象的文字阐述了开四次方的方法后,又声明“后篇效此”,说明也是普遍方法。朱世杰的两部着作都把大量预备知识、算法放在卷首,《四元玉鉴》的卷首还载有天元术、二元术、三元术、四元术的解法范例。《测圆海镜》更是把“圆城图式”及后面要用到的定义、命题列入卷一的“识别杂记”。因此,总的说来,算法(术)是解应用题的关键,“术”自然就成为中国古代数学的核心。中国数学着作是以算法为核心,算法统率例题的形式。中国传统文化
其次是关于数学理论的研究。古希腊数学使用演绎推理,使数学知识形成了严谨的公理化体系。许多学者夸大了中国古算与古希腊数学的差别,认为中国古代数学成就只是经验的积累,没有推理,尤其是没有演绎推理。这是对中国古代数学缺乏起码了解的肤浅之见。遗憾的是,这种肤浅之见被某些科学泰斗所赞同而颇为流行,甚至成为论述现代科学没有在中国产生的出发点。诚然,中国古代数学与哲学结合得不像古希腊那么紧密,中国古代数学大家也不像古希腊数学大师那样大多是思想界的头面人物或思想流派的首领。一般说来,中国思想家对数学的兴趣远逊于古希腊的同仁,先秦诸子中即使数学修养最高的墨家,其数学成就也难望古希腊思想家的项背。同样,中国数学家,就整体而言,对数学理论研究的关注,也远不如古希腊数学家。比如,《九章算术》和许多数学着作对数学概念没有定义,许多数学问题的表述,并不严谨。这就要求读者必须站在作者的立场上,与作者共处于一个和谐的体系中,才能理解其内容,这或多或少也阻碍了数学理论的发展。硬说中国古代与古希腊同样重视数学理论研究,固然是不妥的。反之,说中国古代数学没有理论,没有推理,也是不符史实的。《周髀算经》记载,先秦数学家陈子在教诲荣方时,指出他之所以对某些数学原理不能理解,在于他“之于数未能通类”,他认为数学的“道术”,“言约而用博”,必须做到“能类以合类”。陈子大约处于《九章算术》编纂过程的初期。实际上,《九章》的编纂正是贯穿了“通类”、“类以合类”的思想。《九章算术》的作者把能用同一种数学方法解决的问题归于一类,提出共同的、抽象的“术”,如方田术、圆田术、今有术、衰分术、返衰术、少广术、开方术、盈不足术、均输术、方程术、勾股术等等,又将这些术及例题按其性质或应用分成方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九类。刘徽进一步挖掘《九章》许多方法的内在联系,又将衰分术、均输术、方程新术等归结到今有术。刘徽正是通过“事类相推”,找出了各种方法的归宿,发现数学知识是“枝条虽分而同本干”,并“发自一端”的一株大树,形成了自己完整的数学理论体系。贾宪总结开方法,创造开方作法本源。杨辉总结出勾股生变十三名图,李冶探讨了各种容圆关系,给出600多条公式,也都是通过归纳、类比做到通类,进而“类以合类”,进行数学的理论概括。
通过“合类”,归纳出抽象的公式之后,将这些公式应用于解某些数学问题,实际上是从一般到特殊的演绎过程,这里要特别谈一下中国古代数学中有没有演绎推理的问题。大家知道,数学知识的获得,要通过类比、归纳、演绎各种推理途径,而证明一个数学命题的正确性,则必须依靠演绎推理。中国古代数学着作正是大量使用演绎推理。以中国古代最为发达的高次方程这一分支为例,刘徽、王孝通都提出了方程的推导过程,金元数学家更创造了设未知数列方程的天元术,李冶将用天元术列方程所需要的定理、公式大都在卷一的“识别杂记”中给出。刘徽、王孝通、秦九韶、李冶、朱世杰等推导高次方程的过程都是依靠演绎推理的,因而是正确的。至于刘徽用极限思想和无穷小分割对圆面积公式的证明,对锥体体积公式的证明;用出入相补原理对解勾股形诸公式的证明,对大量面积、体积公式的证明,对开方术的证明;利用齐同原理对方程术、盈不足术及许多算法的证明,都是演绎推理的典范。只要不带偏见,都会认识到刘徽在拓展数学知识时以归纳、类比为主,而在论证《九章算术》的公式、算法的正确性时,在批驳《九章算术》的某些错误时,则以演绎推理为主,从而把他自己掌握的数学知识建立在可靠的理论基础之上。
说数学研究与思想界结合得不密切,是就整体而言的,并不是说每个数学家都如此,比如刘徽就例外。他深受魏晋辩难之风的影响,他对《九章算术》“析理以辞,解体用图”,“析理”正是辩难之风的要件,刘徽析理的原则、析理的方法都是与当时辩难之风合拍的。当然,即使是刘徽对许多数学概念的探讨还没达到古希腊那么深入的地步。比如,刘徽将无穷小分割引入数学证明是前无古人的贡献,却从未考虑过潜无穷小与实无穷小的区别。不过,这未必是坏事。古希腊数学家无法圆满解决潜无限与实无限的问题,不得不把无穷小概念排除在数学研究之外,因此,他们在证明数学命题时,从未使用过极限思想和无穷小分割。刘徽则不然,他认为圆内接正多边形边数无限增多,最后必定“与圆周合体”,因此可以对与圆周合体的正多边形进行无穷小分割并求其面积之和;他认为对阳马与鳖臑组成的堑堵进行无穷分割,可以达到“微则无形”的地步;刘徽在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。古希腊数学家认为正方形的对角线与其边长没有公度,即与1没有公度,导致数学史上的第一次危机,使古希腊数学转向,把计算排除在数学之外,只注重空间形式的研究,因而在无理数面前束手无策。而刘徽、祖冲之等则不然,他们对“开之不尽”的“不可开”的数,敢于继续开方,“求其微数”,以十进分数无限逼近无理根的近似值。没有陷入哲学的争论,从数学计算的实际出发,使中国数学家能够绕过曾导致希腊数学改变航向或裹足不前的暗礁,在数学理论和实践上达到古希腊数学家所不曾达到的高度。
长于计算,以算法为中心,是中国古代数学的显着特点。古希腊数学只考虑数和形的性质,而不考虑具体数值。比如,他们很早就懂得,任何一个圆的周长与直径之比是个常数,但这个常数的数值,几百年无人问津,直到阿基米德才求出其值的范围。相反,中国古典数学几乎不研究离开数量关系的图形的性质,而通过切实可行的方法把实际问题化为一类数学模型,然后用一套程序化即机械化的算法求解。算经中的“术”全是计算公式与计算程序,或应用这些公式、程序的细草,所有的问题都要算出具体数值作为答案,即使几何问题,也要算出有关因素的长度、面积、体积。这就是几何方法与算法相结合,或几何问题的算法化。刘徽说:“以法相传,亦犹规矩、度量可得而共”(《九章算术注·序》),清楚地表达了中国古算形、数结合的特点。《九章算术》的开方术、方程术、盈不足术、衰分术、均输术,刘徽计算圆周率的割圆术、计算弧田面积近似值的方法,贾宪求贾宪三角各廉的增乘方法,贾宪开创而秦九韶使之完备的求高次方程正根的正负开方术,秦九韶的同余式解法,朱世杰的四元术,等等,都有相当复杂的计算程序。数学运算的程序化使复杂的计算问题易于掌握,即使不懂其数学原理,也可掌握其程序,于是产生了程序的辅助用表“立成”。上述这些程序都具有完全确定性、对一整类问题适用性及有效性等现代算法的三个特点。许多程序几乎可以一字不差地搬到现代电子计算机上实现。
先进的记数制度,强烈的位置值制是促成中国算法理论充分发展的重要因素。中国最早发明了十进位置值制记数法,这种记数法十分有利于加减乘除四则运算及分数、小数的表示。加之汉语中数字都是单音节,便于编成口诀,促成筹算乘除捷算法向口诀的转化。而筹算的使用使分离系数表示法成为顺理成章。线性方程组的分离系数表示法、开方式的记法、天元多项式、四元式的记法,实际上也是一种位置值制。未知数的幂次完全由其在表达式中的位置决定,而不必写出未知数本身,如开方式中,自上而下依次是“商”、“实”(常数项)、“方”(一次项)、“一廉”、“二廉”(二、三次项系数)……隅(最高次项系数)。天元式也是如此,只是因为运算中有正幂也有负幂,才需要在常数项旁标一“太”字,或在一次项旁标一“元”字,未知数幂次完全由与“太”或“元”的相对位置决定。这种表示法特别便于开方或加减乘除运算,尤其是用天元的幂次乘(或除),只要上下移动“太”或“元”字的位置即可。
数学理论密切联系实际,是中国古代数学的又一显着特征。不能把古算经的所有题目都看成日常生产生活的应用题,有些题目只是为了说明算法的例题,《九章算术》和《测圆海镜》中都有此类题目。但是,中国古算确实是以应用为目的的,这是与古希腊数学的显着区别之一。后者公开申明不以实际应用为目的,而是看成纯理念的精神活动,欧几里得几乎抹去了《几何原本》的实际来源的所有蛛丝马迹。而中国数学家却从不讳言研究数学的功利主义目的。自《汉书·律历志》到刘徽、秦九韶,都把数学的作用概括为“通神明”、“类万物”两个方面。这里神明的意义既可作神秘主义来理解,也可以看作说明物质世界的变化性质的范畴,或二者兼而有之。《九章算术》刘徽为其注没有任何神秘主义的成份,对通神明的作用也没作任何阐发,刘徽倒是明确指出了《九章算术》各章在实际生产生活中的应用范围:方田以御田畴界域,粟米以御交质变易,衰分以御贵贱禀税,少广以御积幂方圆,商功以御功程积实,均输以御远近劳费,盈不足以御隐杂互见,方程以御错糅正负,勾股以御高深广远,显然是“类万物”方面。秦九韶把“通神明”看作数学作用之大者,并且其理解是神秘主义与世界变化的性质二者兼而有之的,而把类万物、经世务看成数学作用之小者。尽管他表示要将数学“进之于道”,但他的数学研究实践使他感到对于大者仍“肤末于见”,而注重于小者,认识到“数术之传,以实为体”,因此“设为问答以拟于用”。他的《数书九章》除第一问外,大都是实际生活、生产及各种工程的应用题,反映南宋经济活动之翔实远胜于《九章算术》等着作对当时现实经济活动的反映。总之,中国数学密切联系实际,并在实际应用中得到发展。也许正因为有这个长处,中国数学从《九章算术》到宋元高潮,基本上坚持了唯物主义传统,未受到数字神秘主义的影响。明朝着作有一些神秘主义的东西,具有穿靴戴帽的性质,但仍不能改变以实际应用为目的这一总的特征。
统治者对数学的态度造成了中国与希腊数学不同的发展特点。古希腊统治者非常重视数学,造成希腊数学有很强的连续性、继承性。而中国古代的统治者,除个别者外,大都不重视数学。秦始皇统一中国,较为重视数学的墨家遭到镇压,汉朝以后独尊儒术,儒法合流,读经学礼,崇尚文史,成为一种社会风气。由于数学对国计民生的重大作用,统治阶级又不得不承认“算术亦六艺要事”(《颜氏家训·杂艺》),但却主张“可以兼明,不可以专业”(同上)。数学一直被视为“九九贱技”。刘徽哀叹“当今好之者寡”,(《九章算术注·序》)秦九韶说“后世学者鄙之不讲”,(《数书九章序》)李冶以大儒研究数学,自谓“其悯我者当百数,其笑我者当千数”。(《测圆海镜序》)刘徽所处之魏晋,秦、李所处之宋元,都是中国数学兴盛时期,尚且如此,何论其他!二十四史,林林总总,列入无数帝王将相,以及文学家、思想家,甚至烈女节妇,却没有为一个数学家立传,祖冲之、李冶有传,却是以文学家、名臣的身份入传的。社会的需要,以及世代数学家不计悯笑,刻苦钻研,自汉迄元,使中国数学登上了世界数坛的一个又一个高峰,然而中国数学的发展常常大起大落,艰难地前进。更使人觉得奇怪的是,高潮往往出现在战乱时期,如战国时期《九章算术》主要成就的奠基,魏晋南北朝数学理论的建立,宋辽金元筹算数学的高潮;相反,低谷往往出现在大一统的太平盛世,如唐、明两代,不仅数学建树甚少,甚至到了大数学家看不懂前代成果的可笑地步!这当然丝毫不意味着战乱、分裂比安定、统一更有利于数学的发展,而是因为战乱时期,儒家思想的统治地位往往受到冲击,社会思潮较为活跃,思想比较解放。同时由于战乱,读经入仕的道路被堵,知识分子稍稍能按自己的兴趣和社会的需求发挥自己的才智,所蕴藏的数学才能也得到较充分展示,致使处于夹缝中的数学研究状况反而比大一统的太平盛世更好一些罢了。
H. 懂数学建模的人进~~~~~ 数学建模的表现形式有什么跪求
你是指数学建模竞赛?还是平常中解决的实际问题?
对于第一个,一般比赛时向组委会提交一篇论文。一般格式有1问题重述,2问题分析,3模型假设,4模型建立,5模型求解,6模型优缺点分析,7模型推广与应用。
所谓的模型就像小学时解方程一样。只是这里的模型要复杂一点,一般你先从理想化条件去解决问题,然后考虑实际问题的情况,再将模型细化,在解决。直到把问题解决的好。具体表现形式是把条件量化,通过图表、公式等数学语言进行描述。
对于第二个问题,一般着重于实际解决。不着重于形式,能解决问题就好。
建议几个网站,数学中国,校园数苑。是关于建模比赛的网站。
I. 小学数学概念的表现形式有哪些
数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的研究对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形状、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更准确。
中文名
小学数学概念
内
容
数的概念、运算的概念
表现形式
描述式和定义式
语
言
小学数学教材
J. 小学数学概念的小学数学概念表现形式
在小学数学教材中的概念,根据小学生的接受能力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。 用一些生动、具体的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的1、2、3、4、5……叫自然数”;“象1.25、0.726、0.005等都是小数”等。这样的概念将随着儿童知识的增多和认识的深化而日趋完善,在小学数学教材中一般用于以下两种情况。
一种是对数学中的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。
另一种是对于一些较难理解的概念,如果用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的认识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在观察、摆拼中,认识到圆柱体的特征是上下两个底面是相等的圆,侧面展开的形状是长方形。
一般来说,在数学教材中,小学低年级的概念采用描述式较多,随着小学生思维能力的逐步发展,中年级逐步采用定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的矛盾,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必须注意充分领会教材的这两个特点。