导航:首页 > 数字科学 > 转化是数学方法有哪些问题

转化是数学方法有哪些问题

发布时间:2022-07-05 08:01:10

Ⅰ 数学转化问题

不对吧。
当a1≠0时,两边同时约分掉a1:
1 - 1/q=1/q²
两边同乘q²:q² - q=1
q² - q - 1=0
求根公式解得q=(1 ± √5)/2
把q=2或q=-1代入原方程,等式不成立的。

Ⅱ 化归与转化的数学思想是什么

化归与转化的数学思想“:将面临的新问题转化为已经熟悉的规范问题的数学方法,后者具有确定的解法或者有确定的求解程序。这是一种具有普遍适用性的数学思想方法。

化归的基本原则

(1)熟悉化原则。如果化归后的问题仍然没有办法解决,那么化归无效。例如“已知函数y=(a-b)x+c当x=-5,x=3时的值分别为3,-1,求这个函数的解析式。”如果应用待定系数法把这个问题化归为“解一个关于a,b,c的三元一次方程组”。

那么由于这个方程组有三个未知数,只有两个方程,仍无法解,化归结果就不是一个熟悉问题,化归无效。但是,如果化归为“解一个以a-b与c为未知数的二元一次方程组”,由于后者有现成解法,就符合熟悉化原则。

(2)简单化原则。即把复杂问题简单化。仍如上例,“当x=-5,x=3....”本身就是一个我们熟悉的规范问题,a,b,c可以直接忽略,化归就更加简单,可见化归的策略是有优劣之分的。

(3)和谐化原则。即把数学问题的表现形式转化为符合我们认识的统一形式,显得和谐。例如“已知x1,x2是方程x²-5x-4=0的两根,求x1²x2+4x1的值”,求值的表达式很不对称,必须利用韦达定理把它转化为x1+x2和x1x2进行降幂。

(2)转化是数学方法有哪些问题扩展阅读

化归的主要作用

(1)运用化归思想指导新知识的学习。例如学习梯形中位线的性质,我们把梯形中位线化归为三角形的中位线来研究。

(2)利用化归思想指导解题。比如在有理数范围内分解因式:2a²-1/2利用化归的思想构造应用乘法公式:2a²-1/2=1/2(4a²-1)。

(3)利用化归思想梳理知识结构。把逐章所学的知识进行整理、消化、提炼,把零星知识组织成有序的知识网络。例如无理式通过“分母有理化”为求和创造条件,方程组通过消元减少未知数,分式方程通过“去分母”归结为整式方程,或通过“换元”分布求解,等等。

但是要注意,化归前后的两个问题不一定是等价的问题,新问题的解未必都是原问题的解,需要做出判断,比如分式方程化归为整式方程,根可能增加,要舍去增根。

Ⅲ 小学数学中对学生转化思想的培养方法有哪些

转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题,然后通过容易问题还原解决复杂的问题。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。
小学是学生学习数学的启蒙阶段,这一阶段让学生真正理解并掌握一些基本的数学思想便显得尤为重要。转化思想是数学思想的重要组成部分。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在小学数学中,主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等。21世纪的数学教师,应该结合相应的数学情景,培养学生善于和习惯利用转化思想解决问题的意识。使复杂的问题简单化、抽象的问题具体化,特殊的问题一般化,未知的问题已知化,提高学生解决数学问题的能力,从而使学生爱上学数学。

1.计算的纵向转化
加减计算: 20以内数的加减←―100以内数的加减←―多位数的加减←―小数加减 ← 分数加减 。其中 20以内数的加减计算是基础。如23+15可以转化成2+1和3+5两道十以内数的计算,64-38 可以转化成14-8和5-3两道计算。多位数计算也同样。
分数加减计算如 7/8+3/8 就是 7个1/8 加3个1/8 ,就是(7+3)个1/8 ,最后也可以看作是20以内数的计算。乘除计算:一位数乘法← 多位数乘法← 小数乘法。一位数乘法口诀是基础,多位数乘法都可以把它归结到一位数乘法。除数是一位数的除法←―多位数除法←-小数除法。除法中除数是一位数除法的计算方法是基础,多位数除法都可以把它归结到一位数除法。 2.计算的横向转化
加法与减法之间可以转化,乘法与除法之间可以转化。几个相同加数连加的和,可以转化成乘法来计算。被减数连续减去几个相同的减数,差为零,可以转化成除法来表示。分数的除法,可以将除数颠倒位置变成乘法进行计算。
3.图形中的转化
面积计算公式的推导可以把长方形面积公式作为基础,其它图形面积公式都可以通过转化变成长方形或平行四边形后得出公式。体积计算公式以长方体的体积计算公式为基础,圆柱体的体积公式的推导也是通过转化为长方体来得出。转化思想是解决数学问题的一种最基本的数学思想,在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题,我们也常常在不同的数学问题之间互相转化,可以说在解决数学问题时转化思想几乎是无处不在的。

Ⅳ 小学数学中哪些知识用了转化思想

1、平行四边形面积公式的推导:把平行四边形转化成长方形。

2、三角形面积公式的推导:把两个完全一样的三角形拼成一个平行四边形。

3、梯形面积公式的推导:把两个完全一样的梯形拼成一个平行四边形。

4、圆面积公式的推导:把圆转化成近似的长方形。

5、圆柱体积公式的推导:把圆柱转化成长方体。

6、简便计算时凑整十或整百法。如:253-99=253-100+1

7、数和式子的转化:25×16=25×4×4 16转化成4×4

8、数和数的转化:1÷0.125=1÷1/8

关于小学数学的转化思想的相关知识:

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

在教学中我们经常会遇到需要利用“转化思想”的事例。比如计算98×35,把98转化成100-2,这样可以利用乘法分配律进行简算:98×35=(100-2)×35=100×35-2×35=3430。

Ⅳ 什么是转化思想什么是什么是从特殊到一般的数学方法

就是把所要解决的问题转化为另一个较易解决的问题或已经解决的问题。

转化思想是将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为已知知识范围内已经解决或容易解决的问题方法的数学思想。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际就是转化的过程。数学中的转化比比皆是,如:未知向已知的转化、数与形的转化、空间向平面的转化、高维向低维的转化、多元向一元的转化,高次向低次的转化等,都是转化思想的体现。

从特殊到一般的数学方法就是转化思想中的一部分,也就是从特殊的事例中总结出一半规律的过程就叫做从特殊到一般的数学方法。


(5)转化是数学方法有哪些问题扩展阅读:

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正,它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

Ⅵ 如何将实际问题转化为数学问题,其基本步骤有哪些

把实际问题化成一个数学问题,这个过程称为数学建模,其步骤如下:

1、审读题意:从读懂文字叙述,理解实际背景入手,概括出问题的数学实质。

2、实际问题数学化(即数学建模)将实际问题转化为方程(组)、不等式组、函数等数学问题。

3、数学问题标准化,将建好的数学模型转化为一个常规的数学问题。

(6)转化是数学方法有哪些问题扩展阅读:

数学模型的基本原则:

1、简化原则

现实世界的原型都是具有多因素、多变量、多层次的比较复杂的系统,对原型进行一定的简化即抓住主要矛盾,数学模型应比原型简化,数学模型自身也应是“最简单”的。

2、可推导原则

由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。

3、反映性原则

数学模型实际上是人对现实世界的一种反映形式,因此数学模型和现实世界的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键性技巧。

Ⅶ “转化”是一种重要的数学思想,将空间问题转化为平面问题是转化思想的一个重要方面。

转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题,这种思想就是转化思想。
转化的思想是把一种数学问题转化成另一种数学问题进行思考的方法。把一种数学问题合理地转化成另一种数学问题 并得到有效的解决。转化思想就是把要解决的问题,通过观察分析、类比联想等思维过程转化已有知识范围内已经解决或容易解决的思想。解题过程就是一个不断转化的过程,就是在转化思想的指导下,通过细致的观察、合理联想、缜密推理、提取相关知识、调用合适的方法加工、处理信息、逐步缩小题设与结论间差异的过程。

Ⅷ 怎样培养学生运用转化策略解决数学问题

“转化”是研究和解决数学问题的一种有效的思考方法,根据学生已有的生活经验和知识,运用事物和事物之间互相联系,把未知变为已知,把复杂变为简单的思维方法。《新数学课程标准》中指出:数学学习应当使学生“形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力与创新精神”。就解题的本质而言,解题既意味着“转化”,因此学生学会数学“转化”策略,有利于实现学习迁移,特别是原理和态度的迁移。因此,我们在小学数学教学中,应当结合具体的教学内容,渗透数学“转化”思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
“转化”是解决问题时经常采用的方法,“转化”的手段和方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握“转化”策略不仅有利于问题的解决,更有益于思维的发展。教学中不应只以学生能够解决教材里的各个问题为目的,而在于学生对“转化”策略的体验与主动应用。具有初步的“转化”意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
二、转化的学习基础
(一)知识基础--策略学习的基石
万丈高楼平地起,转化策略的运用同样如此。“转化”就是把新问题变成旧问题,把复杂的问题变成简单的问题,从而使原问题得以解决的一种策略。其实,运用什么方法转化,转化后的问题又怎么解决,这都需要一定的知识基础,否则问题也不能得到解决。可见,一定的知识基础是“转化”策略学习的基石。
(二)能力基础--策略学习的有力杠杆
策略的学习不仅需要一定的知识基础,也需要一定的能力基础。心理学研究表明:能力是人们获取知识、掌握技能的基本条件,完成任何一种活动都需要多种能力的结合。因此,学生已具备的能力基础可以说是策略学习的有力杠杆。
1.观察、想象、操作能力:
学习几何形体离不开敏锐的观察力和空间想象力,以及在此基础上进行动手操作的能力。
2.迁移、推理能力:由于“转化”是把一类问题转化成另一类问题,因此无论从转化的视角,还是从推广应用的视角,学生都应具有迁移、推理的能力。所以,教学“转化”策略时,要引导学生正确推理,实现转化,切实解决问题。当然更应由例题的学习,进而能解决类似的更多实际问题。
3.求异、创新能力:人人具有求异的思想,人人具有创新的冲动。事实上,转化也是一种重要的策略,但在真正解决问题时,还需要确定具体的转化目标和方法。
4.收集、处理信息的能力:现代社会是信息社会,收集、处理信息的能力是一个人必备的学习能力,也是衡量一个人能力高低的重要标准。因而,它也是学生学习转化策略的重要能力基础。
三、转化策略
1、运用类比联想,实现转化
类比方法是通过对两个研究对象的比较,根据它们某些方面的相同或类似之处,推出它们在其他方面也可能相同或类似的一种推理方法。因此,在学习新知识时,适时运用类比方法进行转化,可使生疏的问题转化为熟悉的问题,有利于学生更好地接受新知识,巩固旧知识。
2、运用数形结合思想,实现转化
数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过做一些线段图、 数形图 、长方形面积图 、集合体等来帮助学生正确理解数量关系,使问题内容具体化、形象化,从而把复杂问题转化为简单问题的一种数学思想方法。
3、运用替换思想,实现转化
替换思想是数学教学的重要思维方法,替换的实质是改变题目的形式,但却不改变题目的本质。当我们遇到题意比较难懂的习题时,可以把题中的某些条件或问题替换成与其内容等价的另一种形式,从而实现解题思路的顺利转化,以达到解题的目的。
4、运用假设法,实现转化
在小学数学中,学生对思考性较强的问题常常感到难以解决。因此,教师在教学过程中要注意教给学生解决问题的方法,以提高他们的思维能力。而假设方法往往在解决问题的过程中起关键性的作用。假设法就是把抽象性的问题转化为比较具体的问题,使其中的数量关系更加明确,更易于把握解题的路径。
5、运用已有知识,实现转化
生疏问题向熟悉问题转化是解题中常用的思考方法。解题能力实际上是一种创造性的思维能力,而这种能力的关键是能否细心观察,运用过去所学的知识,将生疏问题转化为熟悉问题。因此作为教师,应深刻挖掘量变因素,将教材抽象程度利用学过知识,加工到使学生通过努力能够接受的水平上来,缩小接触新内容时的陌生度,避免因研究对象的变化而产生的心理障碍,这样做常可得到事半功倍的效果。
6、运用合理设置问题,实现转化
教师通过合理设置问题,将一个复杂的问题分成几个难度与学生的思维水平同步的小问题,再分析说明这几个小问题之间的相互联系,以局部知识的掌握为整体服务。例如,针对某一概念,可围绕下面几个角度设置问题:概念的构成;概念所涉及的子概念;概念的外延;概念的内涵;概念的确定与否定;概念之间的关系;概念的应用以及由概念而设计的一些构造性问题等等。问题与问题之间要有一定的梯度,以利于教学时启发学生思维。
复杂问题简化是数学解题中运用最普通的思考方法。一个难以直接解决的问题,通过深入观察和研究,转化为简单问题迅速求解。

Ⅸ 转化方法在数学中有哪些应用

至多至少 转化为 求最值

Ⅹ 用转化的策略解决的数学问题

转化是一种常见的极其重要的解决问题的策略。转化的关键是要能根据具体的问题,确定转化后要实现的目标和具体的转化方法,转化的手段和具体方法是多样灵活的,既与实际问题的内容和特点有关又与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于学生思维的发展。这部分内容的教学不以学生能够解决教科书里的各个问题为目的,而在于学生对转化策略的进一步体验与主动应用,形成初步的转化意识和能力。

阅读全文

与转化是数学方法有哪些问题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071