⑴ 在爱因斯坦以前有哪些科学家已经得到了狭义相对论中的哪些相关结论
有个数学家发明了洛伦兹变换,还有爱因斯坦用了非欧几何,在爱因斯坦之前的莫雷-约翰逊实验进一步实验出光速不变,爱因斯坦用实验结果创造了光速不变原理,他还拓展了伽里略的相对性原理。我所知道的大概就是这么多。
⑵ 国外数学科学家的故事
爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。
爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。
十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。
爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。他创立了相对论宇宙学,建立了静态有限无边的自洽的动力学宇宙模型,并引进了宇宙学原理、弯曲空间等新概念,大大推动了现代天文学的发展。
赫尔希(Hershey,Alfred Day) 美国微生物学家。1908年12月4日生于密执安州奥沃索。 赫尔希于1934年在密执安州立大学获得博士学位,以后在华盛顿大学任教,1950年以后转到纽约州冷泉港,1975年退休。 他的学术兴趣是研究噬菌体。1945年他表明在噬菌体及其捕食的细菌细胞中都有自发的突变发生,这与卢里亚同时独立做出的结果是相同的。1946年,他证明了不同病毒的遗传物质能够自发结合产生突变的效应,这同德尔布吕克独立证明的结果也是一样的。 1952年他又证明,进入细菌细胞的是噬菌体的核酸,这表明携带遗传信息的是核酸而不是与它相关的蛋白质。这一结论使翌年沃森和克里克关于核酸复制的发现更加具有革命性的意义。 赫尔希、德尔布吕克和卢里亚因其工作分享了1969年诺贝尔生理学和医学奖。美国的巧克力城,以其名命名。
⑶ 科学界有哪些着名的猜想
科学界着名的猜想:
一、四色猜想
世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、着名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、着名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
二、哥德巴赫猜想
世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位着名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道着名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
三、费尔马猜想
也叫费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。
它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。
被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。
德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
四、丘成桐猜想
“弦”理论认为,宇宙是十维时空,即通常的四维时空和一个很小的六维空间。
意大利着名几何学家卡拉比提出,复杂的高维空间是由多个简单的多维空间“粘”在一起,也就意味着高维空间可通过一些简单的几何模型拼装得到。
1975年,数学家丘成桐等人攻克了陈类为负和零的“卡拉比猜想”,但未能解决第一陈类为正的问题,丘成桐提出,可将其转化为代数几何的稳定性问题,这就是困扰国际学界几十年的“丘成桐猜想”。
2014年5月,陈秀雄、唐纳森和孙崧给出了“丘成桐猜想”的完整证明。
五、黎曼猜想
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今世界七大数学难题中也包括黎曼猜想。
与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要,最期待解决的数学难题。
至今尚无人给出一个令人信服的关于黎曼猜想的合理证明。
⑷ 外国科学家有哪些
外国:
科赫——细菌学的奠基人威廉·康拉德·伦琴——揭开20世纪物理学革命的人
托马斯·阿尔伐·爱迪生——举世闻名的美国大发明家
雅科布·亨利·范特霍夫——20世纪最天才的化学家
威廉·拉姆赛——着名的无机化学家
费里德里希·威廉·奥斯特瓦尔德——现代物理化学的奠基者
大卫·希尔伯特——20世纪伟大的数学家
莱特兄弟——第一架动力飞机的发明者
玛丽·居里——镭的发现者
维克多·格林尼亚——伟大的化学家
欧内斯特·卢瑟福——原子核物理学之父
伽利尔摩·马可尼——无线电之父
罗伯特·巴雷尼——着名的生理学家
欧文·薛定谔——波动力学的创立者
钱德拉塞卡拉·文卡塔·赖曼——亚洲诺贝尔奖第一人
威廉·劳伦斯·布拉格——最年轻的诺贝尔奖获得者
诺伯特·维纳——控制论之父
约翰·富兰克林·恩德斯——开创小儿麻痹研究新纪元
伊伦·约里奥·居里——人造放射同位素发明的先驱
伊西多·艾萨克·拉比——着名美国物理学家
沃尔夫冈·泡利——着名奥地利理论物理学家
沃纳·卡尔·海森堡——量子力学的开路先锋
欧内斯特·奥兰多·劳伦斯——着名美国物理学家
约翰·冯·诺依曼——现代电子计算机之父
罗伯特·奥本海默——原子弹之父
库尔特·哥德尔——着名美国数学家汤川秀树——介子场理论的提出者
列夫·达维多维奇·朗道——全能的理论物理学家
韦纳·冯·布劳恩——美国现代航天之父
诺尔曼·布劳格——世界“绿色革命”的先驱
费朗索瓦·雅各布——着名法国生物学家
约翰·R·范恩——英国医学家药理学家
顿,法拉第,伽利略,安培,赫兹,普朗克,爱因斯坦,伦琴,居里夫妇,霍金,孟德尔,冯.布劳恩, 奥本海默, 门捷列夫, 达尔文, 巴浦洛夫, 诺贝尔·······
中外伟大科学家,如下:
科学家,是一个散发着迷人光辉的字眼。本书旨在通过对中外大科学家青少年时代生平、成长以及学习生活形象而深刻的描绘和对其贡献、成就、人格的展现,揭示科学家的思想底蕴和精神世界,探索科学家的成长、成功之路,以达到展现科学巨人风范,传播科学思想,普及科学方法,弘扬科学精神,理解科学价值的目的。激发广大青少年从小树立远大理想,爱科学、学科学,像科学家那样学习、创新、奉献,培养他们的科学素质,从而增强他们献身科学事业的信心和决心。本书介绍了64位20世纪的中外大科学家的成才之路和他们照耀人类的智慧之光。
⑸ 谁知道数学家给我写10个,国内国外的都行
陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。
1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从着名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。
1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。
1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。
1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。
1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。
自1986年起,中国数学会设立并承办“陈省身数学奖”。
北京时间2004年12月3日19时14分,陈省身在天津逝世。
丘成桐、吴文俊、廖山涛、郑绍远等着名学者都曾师从陈省身。
[编辑]
成就
陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有:
紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专着。
复变函数值分布的复几何化,其中一着名结果是陈-博特定理。
积分几何的运动公式,其超曲面的情形系同严志达合作。
复流形上实超曲面的陈�莫泽理论,是多复变函数论的一项基本工作。
极小曲面和调和映射的工作。
陈-西蒙斯微分式是量子力学异常现象的基本工具。
[编辑]
荣誉
陈省身获得了许多科学荣誉。
1961年,陈省身继物理学家吴健雄之后当选为第二位华裔美国国家科学院院士,这是美国科学界的最高荣誉职位。
1970年,获得美国数学协会的肖夫内奖。
1976年,获美国福特总统颁发的美国国家科学奖章,这是美国在科学、数学、工程方面的最高奖;陈省身和吴健雄是最早获得该项荣誉的华人科学家。
1983年,美国数学会“全体成就”的斯蒂尔奖。
1984年获以色列总统贺索颁发的沃尔夫数学奖,这是世界数学领域的最高奖项;陈省身是获得沃尔夫奖荣誉的第一位华裔数学家、第二位华裔科学家。
此外,他还曾获得美国数学学会颁发的Chau-venet奖(1970年)、Steele奖(1983年)。并曾获得德国洪堡奖、俄罗斯罗巴切夫斯基数学奖等奖项。另外,他在2004年获首届邵逸夫数学科学奖。11月2日,经国际天文学联合会下属的小天体命名委员会讨论通过,1998CS2小行星被命名为“陈省身星”。
陈省身曾经三次应邀在国际数学家大会上作演讲:1950年在美国波士顿的剑桥,1958年在苏格兰的爱丁堡,1970年在法国的尼斯。1950年和1970年都是一小时报告,这是国际数学家大会上最高规格的学术演讲。
陈省身曾出任美国数学学会副主席。他还是法国、意大利、中国等国的外籍院士。他也是第三世界科学院的创始发起者,英国皇家学会国外会员,巴西科学院的通讯院士,印度数学会名誉会员等。他曾被瑞士联邦理工大学、柏林工业大学、香港科技大学等多所着名大学授予荣誉博士学位。
陈省身被认为是20世纪最伟大的微分几何学家。陈省身和华罗庚、冯康被认为是三位具有世界顶尖成果和国际性影响的华人数学家。他还是菲尔茨奖得主丘成桐在伯克莱加州大学的导师。
吴文俊
吴文俊,中国人,1919年5月12日生于上海。1940年毕业于上海交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。
拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多着名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。
机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。
中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解
吴文俊 科技名人
数学家。 上海人。 1940年毕业于上海交通大学。 1949年获法国国家科学研究中心博士学位。 1991年当选为第三世界科学院院士。中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一。 50年代在示性类、示嵌类等研究方面取得吴文俊公式、吴文......
吴文俊(1919~ )
中国数学家。中国科学院院士。1919年5月12日生于上海。1940年毕业于上海交通大学。1947年赴法国留学,先后在斯特拉斯堡、巴黎、法国科学研究中心进行数学研究,1949年获博士学位。1951年回国。历任北京大学数学系教授,中国科学院数学研究所研究员、副所长,中国科学院系统科学研究所研究员、副所长、名誉所长,数学机械化研究中心主任,中国数学会理事长、名誉理事长,中国科学院数学物理学部常务委员、主任等职。曾任全国政协常务委员。主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人之一。1952年刊印出版的博士论文《球纤维空间示性类理论》是对纤维空间基本问题的重要贡献。50年代在示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名着。这项成果曾获1956年国家自然科学奖一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为吴方法),实现了初等几何与微分几何定理的机器证明,达到了世界先进水平。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获全国科学大会重大成果奖和中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面也取得了重要成果。
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学着作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其着作甚多。
他着名的数学书共五种二十一卷。着有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这
一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈
代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉
当-布饶尔-华定理。其专着《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍
德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论着作之
一。其专着《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在
调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等
奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部着作
并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为
“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专着和科普性着作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数
学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国
际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王
元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改
进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类
生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等着作
中国着名数学家 许宝騄 华罗庚 陈省身 林家翘 吴文俊
陈景润 丘成桐 张 衡 刘 徽 祖冲之
杨 辉 姜立夫 陈建功 熊庆来 苏步青
江泽涵
回答者:hqm4721 - 高级经理 七级 4-21 14:20
评价已经被关闭 目前有 4 个人评价
好
100% (4) 不好
0% (0)
对最佳答案的评论
太好了
评论者: 136569769 - 试用期 一级
陈景润 华罗庚 杨辉 祖暅 祖冲之
评论者: 122400 - 魔法学徒 一级
很齐全呢!
评论者: 不二的芥末寿司 - 试用期 一级
其他回答共 1 条
刘徽(生于公元250年左右)
是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产
贾宪
中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶(约1202--1261)
字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成着名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶(1192----1279)
原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学着作《益古演段》(1259)也是讲解天元术的。
朱世杰(1300前后)
字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名着,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之(公元429~500年)
祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖暅
祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中着名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其着作甚多。
他着名的数学书共五种二十一卷。着有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
华罗庚
中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专着《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论着作之一。其专着《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部着作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专着和科普性着作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等着作。
⑹ 除了陈景润“陈氏定理的故事”,你还知道古今中外哪些名家的数学故事
1.华罗庚沉迷算数
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”,这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。
华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
2.8岁高斯发现了数学定理
高斯出生在一个贫穷的家庭,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。有一天高斯的数学教师情绪低落的一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢?
高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书。
3.伽利略质疑权威
伽利略17岁那年,考进了比萨大学医科专业。有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”
“我是根据古希腊着名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。
4.陈景润攻克歌德巴赫猜想
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
5.网络全书式“全才”牛顿
12岁左右到17岁,牛顿都在金格斯皇家中学学习,在该校图书馆的窗台上还可以看见他当年的签名。他曾从学校退学,所幸金格斯皇家中学的校长亨利·斯托克斯说服了牛顿的母亲,牛顿又被送回了学校以完成他的学业。他在18岁时完成了中学的学业,并得到了一份完美的毕业报告。
1661年6月3日,他进入了剑桥大学的三一学院。在那时,该学院的教学基于亚里士多德的学说,但牛顿更喜欢阅读一些笛卡尔等现代哲学家以及伽利略、哥白尼和开普勒等天文学家更先进的思想。1665年,他发现了广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学。
⑺ 中国、外国数学家有哪些
国内数学家
专门以此为研究对象的学者就是我们所说的数学家(Mathematician) 。
中国古代着名数学家
张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之
中国现代着名数学家
胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗。
编辑本段三、外国着名数学家
1、古希腊
泰勒斯,毕达哥拉斯,欧几里得,阿基米德,阿普洛尼亚斯,芝诺, 托勒密、希帕蒂亚
2、德国
高斯、莱布尼茨、希尔伯特、康托尔、克莱因、黎曼、拉特马赫、艾米·诺特 、狄利克雷、柯朗、策梅洛、
3、法国
勒奈·笛卡儿、拉格朗日、拉普拉斯、皮埃尔·费马、柯西、泊松、嘉当、伽罗瓦、傅立叶,玛丽·索菲·热尔曼,格罗森迪克、庞加莱
4、美国
Lars V.Ahlfors、约瑟夫·特朗、约翰·纳什、惠特尼
5、英国
艾萨克·牛顿、泰勒、麦克劳林、罗素、安德鲁·怀尔斯、埃斯特曼、哈代、利尔特伍德
6、瑞士
欧拉、尼古拉·伯努利、丹尼尔·伯努利、雅各布·伯努利、约翰·伯努利
7、匈牙利
费耶、爱尔特希、冯·诺依曼
8、挪威
阿贝尔
9、澳大利亚
陶哲轩、派斯
10、苏联
庞特里亚金、鲁金、阿诺尔德、什尼列尔曼、布赫夕太勃、巴尔巴恩、柯尔莫洛科夫、闵可夫斯基
11、意大利
蕾西、伽利略、斐波那契
12、印度
拉马努金
13、爱尔兰
汉米尔顿
⑻ 非常神奇的数学结论有哪些
1、存在无理数的无理数次方是有理数吗?
废话,肯定存在。例如,我们来考虑
很明显很明显
等于2是有理数了;
但是对于更一般的情况下判断任意给一个无理数的无理数次方是有理数还是非常难的,目前没有更有效的方法。
2、圆周率
圆周率本身是无理数,而且更神奇的是你的生日、银行卡号、学号、身份证号等可能就包含在圆周率中的某一段中;
但是这还不是更神奇的事情。更神奇的地方是和概率论有着非常密切的关系。最典型的一个例子应该是18世纪法国数学家蒲丰的投针实验,这个实验是这样的:假设在平坦的地面上画着间距为单位1的平行线,把一根长度为单位1的针随机扔在地上,问这根针与地面的平行线相交的概率为多少。答案非常出乎意料的是
,这个用到微积分的知识。
但是这还不是更神奇的事情。更神奇的是,
,这个级数的每一项都是有理分式,无数个有理数求和却不是有理数而是无理数,并且这个无理数还和有关,它居然等于!当然这个公式对于下面这些公式来说还是弱爆了。
韦达给出了一个超漂亮的式子:
沃利斯也不甘示弱:
更有史上最天才的拉马努金给出的(这个等式规律性非常强有木有):
等等等等有几吨这种美感与智慧并存的结论!!!
这还不是更神奇的事情,更神奇的地方等待着面前的你去发掘!
3、存在一个不等式,它的解在平面上的分布图形长的和该不等式一模一样!!
这个我是在顾森的博客上看到的:2001年,在介绍一种全新的方程图象绘制算法时,塔珀(Jeff Tupper)构造了这样一个有趣的不等式:
对于某个n,图象在0<=x<=106,n<=y<=n+17的范围内它的解的分布图形是:
有木有长的一模一样!!有木有长的一模一样!!
4、在有些空间中,收敛序列可能不止收敛于一个点!
在潜意识里,任给一个收敛序列,它的收敛点只有一个,比如给一个序列它的通项为
,它只收敛于自然底数e。然而在我们的宇宙中,收敛并不是这么简单,以上序列之所以只收敛于一个点是因为它是限制在实数空间中,除了实数空间,宇宙还包含了各种闻所未闻见所未见的空间。在拓扑学中对于收敛的定义是这样:对于数列{Xn}来说,当n足够大时,x的每一个领域都包含着Xn,那么x就是Xn的收敛点。所以举一个简单的例子,平庸空间中的任何序列都收敛,更奇葩的是还收敛于这个空间中的任何一个点,由此还可以推出任何序列都收敛自身中的任何一个点,多么不可思议!
5、给一个简单的猜想
这里有一个很有趣的一个问题:从任给一个正整数开始,如果这个数是偶数,把它除以2;如果是奇数,则乘以3再加1,依次下去进行有限步,最后一定等于1。
这个操作起来蛮简单,但是至今无人能证明,透露一下它的难度和“1+1”是一样的!关于这个猜想有一个很逗的事情,它的广为人知离不开日本的一位数学家角谷,所以该猜想也称角谷猜想(尽管这不是角谷提出来的,所以这个猜想有很多名字科拉兹猜想、叙拉古猜想、哈斯算法、乌拉姆问题and so on。。。。。说白了,你要是对传播这个猜想有比较大的贡献也可以以你的名字命名,最后名字太多了,国际统一将它称为3x+1问题了,所以错过了一次以自己名字命名问题的机会哈哈哈哈哈哈),当时角谷拿到这个问题后,前鼓后捣地搞出了一些名堂,然后就带着自己的这些成果奔到美国常春藤作报告。然后常春藤的师生听到这么简单的问题居然还没人能解决,于是信心满满的都去搞这个去了,然而几个月过去他们师生还在沉迷这个问题,其它研究也不做,美国开始胡思乱想认为这个问题是拖慢国家数学进程的毒瘤于是禁止研究它了,于是这股热流在美国渐渐消减,现在关注的人也不多了。
⑼ 外国科学家有哪些 (10个)
爱因斯坦、爱迪生、牛顿、居里夫人、达尔文、孟德尔、弗兰克林、门捷列夫
法拉第,伽利略,安培,赫兹,普朗克,伦琴,居里夫妇,霍金,孟德尔,冯.布劳恩, 奥本海默, 巴浦洛夫, 诺贝尔。。。。。
各类的:
外国:
科赫——细菌学的奠基人威廉·康拉德·伦琴——揭开20世纪物理学革命的人
托马斯·阿尔伐·爱迪生——举世闻名的美国大发明家
雅科布·亨利·范特霍夫——20世纪最天才的化学家
威廉·拉姆赛——着名的无机化学家
费里德里希·威廉·奥斯特瓦尔德——现代物理化学的奠基者
大卫·希尔伯特——20世纪伟大的数学家
莱特兄弟——第一架动力飞机的发明者
玛丽·居里——镭的发现者
维克多·格林尼亚——伟大的化学家
欧内斯特·卢瑟福——原子核物理学之父
伽利尔摩·马可尼——无线电之父
罗伯特·巴雷尼——着名的生理学家
欧文·薛定谔——波动力学的创立者
钱德拉塞卡拉·文卡塔·赖曼——亚洲诺贝尔奖第一人
威廉·劳伦斯·布拉格——最年轻的诺贝尔奖获得者
诺伯特·维纳——控制论之父
约翰·富兰克林·恩德斯——开创小儿麻痹研究新纪元
伊伦·约里奥·居里——人造放射同位素发明的先驱
伊西多·艾萨克·拉比——着名美国物理学家
沃尔夫冈·泡利——着名奥地利理论物理学家
沃纳·卡尔·海森堡——量子力学的开路先锋
欧内斯特·奥兰多·劳伦斯——着名美国物理学家
约翰·冯·诺依曼——现代电子计算机之父
罗伯特·奥本海默——原子弹之父
库尔特·哥德尔——着名美国数学家汤川秀树——介子场理论的提出者
列夫·达维多维奇·朗道——全能的理论物理学家
韦纳·冯·布劳恩——美国现代航天之父
诺尔曼·布劳格——世界“绿色革命”的先驱
费朗索瓦·雅各布——着名法国生物学家
约翰·R·范恩——英国医学家药理学家