⑴ 什么是黎曼猜想
Riemann 猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数: Riemann ζ 函数。 这个函数虽然挂着 Riemann 的大名, 其实并不是 Riemann 首先提出的。 但 Riemann 虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念 Riemann 的卓越贡献, 就用他的名字命名了这一函数。
那么究竟什么是 Riemann ζ 函数呢? Riemann ζ 函数 ζ(s) 是级数表达式 (n 为正整数)
ζ(s) = ∑n n-s (Re(s) > 1)
在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) > 1 的区域 (否则级数不收敛)。 Riemann 找到了这一表达式的解析延拓 (当然 Riemann 没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的 Riemann ζ 函数可以表示为:如右上角图
式中的积分实际是一个环绕正实轴 (即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 Γ 函数 Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s>1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是 Riemann ζ 函数的完整定义。
编辑本段黎曼猜想
运用右上角图中的积分表达式可以证明, Riemann ζ 函数满足以下代数关系式:
ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s)
从这个关系式中不难发现, Riemann ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零[注三]。 复平面上的这种使 Riemann ζ 函数取值为零的点被称为 Riemann ζ 函数的零点。 因此 s=-2n (n 为正整数) 是 Riemann ζ 函数的零点。 这些零点分布有序、 性质简单, 被称为 Riemann ζ 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外, Riemann ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对 Riemann ζ 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。Riemann 猜想就是一个关于这些非平凡零点的猜想。
Riemann 猜想: Riemann ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。
这就是 Riemann 猜想的内容, 它是 Riemann 在 1859 年提出的。从其表述上看, Riemann 猜想似乎是一个纯粹的复变函数命题,但它其实却是一曲有关素数分布的神秘乐章。
编辑本段证明黎曼猜想的尝试
黎曼1859年在他的论文 Über die Anzahl der Primzahlen unter einer gegebenen Größe' 中提及了这个着名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道ζ函数的不平凡零点对称地分布在直线s = ½ + it上,以及他知道它所有的不平凡零点一定位于区域0 ≤ Re(s) ≤ 1中。
1896年,雅克·阿达马和 Charles Jean de la Vallée-Poussin 分别独立地证明了在直线Re(s) = 1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0 < Re(s) < 1上。这是素数定理第一个完整证明中很关键的一步。
1900年,大卫·希尔伯特将黎曼猜想包括在他着名的23条问题中,黎曼猜想与哥德巴赫猜想一起组成了希尔伯特名单上第8号问题。当被问及若他一觉醒来已是五百年后他将做什么时,希尔伯特有名地说过他的第一个问题将是黎曼猜想有否被证明。(Derbyshire 2003:197; Sabbagh 2003:69; Bollobas 1986:16). 黎曼猜想是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。
1914年,高德菲·哈罗德·哈代证明了有无限个零点在直线Re(s) = ½上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰·恩瑟·李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线 Re(s) = ½ 上的平均密度。
近几十年的工作集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)
过去数十年很多数学家队伍声称证明了黎曼猜想,而截至2007年为止有少量的证明还没被验证。但它们都被数学社群所质疑,而专家们多数并不相信它们是正确的。艾希特大学的 Matthew R. Watkins 为这些或严肃或荒唐的声明编辑了一份列表,而一些其它声称的证明可在arXiv数据库中找到。
⑵ 黎曼猜想(Riemann hypothesis)是什么有什么用
黎曼猜想(或称黎曼假设)是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。
作用:对黎曼猜想的研究也促进了相关学科的蓬勃发展。
黎曼猜想起源:
黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。
作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
⑶ 黎曼猜想是什么
黎曼猜想是一个寻找质数的方法。
广义黎曼猜想是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明。这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想。在这个猜想上稍有突破,就有不少重大成果。
在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展。可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一。
⑷ 黎曼假设、普安卡雷猜想、霍奇猜想、戴尔猜想、斯托克斯方程、米尔斯理论、P对NP问题)
21世纪七大数学难题
最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
“千僖难题”之四: 黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。着名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
⑸ 黎曼猜想是什么
黎曼猜想具体内容
黎曼观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。
黎曼ζ 函数 ζ(s) 是级数表达式
黎曼猜想的提出:
黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。
从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。
黎曼论文的一个重大的成果,就是发现了质数分布的奥秘完全蕴藏在一个特殊的函数之中,尤其是使那个函数取值为零的一系列特殊的点对质数分布的细致规律有着决定性的影响。那个函数如今被称为黎曼ζ函数,那一系列特殊的点则被称为黎曼ζ函数的非平凡零点。
有意思的是,黎曼那篇文章的成果虽然重大,文字却极为简练,甚至简练得有些过分,因为它包括了很多“证明从略”的地方。而要命的是,“证明从略”原本是应该用来省略那些显而易见的证明的,黎曼的论文却并非如此,他那些“证明从略”的地方有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。
但黎曼的论文在为数不少的“证明从略”之外,却引人注目地包含了一个他明确承认了自己无法证明的命题,那个命题就是黎曼猜想。黎曼猜想自1859年“诞生”以来,已过了150多个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。
有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。
⑹ 黎曼对数学的贡献有哪些﹖
他引入三角级数理论,从而指出积分论的方向,并奠定了近代解析数论的基础,提出一系列问题;他最初引入黎曼曲面这一概念,对近代拓扑学影响很大;在代数函数论方面,如黎曼-诺赫定理也很重要。在微分几何方面,继高斯之后建立黎曼几何学。
⑺ 黎曼假设的猜想来源
黎曼猜想是黎曼1859年提出的,这位数学家于1826年出生在一座如今属于德国,当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。
黎曼论文的一个重大的成果,就是发现了质数分布的奥秘完全蕴藏在一个特殊的函数之中,尤其是使那个函数取值为零的一系列特殊的点对质数分布的细致规律有着决定性的影响。那个函数如今被称为黎曼ζ函数,那一系列特殊的点则被称为黎曼ζ函数的非平凡零点。
有意思的是,黎曼那篇文章的成果虽然重大,文字却极为简练,甚至简练得有些过分,因为它包括了很多“证明从略”的地方。而要命的是,“证明从略”原本是应该用来省略那些显而易见的证明的,黎曼的论文却并非如此,他那些“证明从略”的地方有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。但黎曼的论文在为数不少的“证明从略”之外,却引人注目地包含了一个他明确承认了自己无法证明的命题,那个命题就是黎曼猜想。 黎曼猜想自1859年“诞生”以来,已过了一百五十多个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。
当然,如果仅从时间上比较的话,黎曼猜想的这个纪录跟费尔马猜想时隔三个半世纪以上才被解决,以及哥德巴赫猜想历经两个半世纪以上屹立不倒相比,还差得很远。但黎曼猜想在数学上的重要性却要远远超过这两个大众知名度更高的猜想。有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。一个数学猜想与为数如此众多的数学命题有着密切关联,这是极为罕有的。
⑻ 什么是黎曼猜想
黎曼猜想
这是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明。这个猜想是指黎曼 函数:
的非平凡零点都在 的直线上。
在数学中我们碰到过许多函数,最常见的是多项式和三角函数。多项式 的零点也就是代数方程 =0的根。根据代数基本定理,n次代数方程有n个根,它们可以是实根也可以是复根。因此,多项式函数有两种表示方法,即
当s为大于1的实数时, 为收敛的无穷级数,欧拉仿照多项式情形把它表示为乘积的情形,这时是无穷乘积,而且也不是零点的形式:
但是,这样的 用处不大,黎曼把它开拓到整个复数平面,成为复变量s就包含非常多的信息。正如多项式的情形一样,函数的信息大部分包含在其零点的信息当中,因此, 的零点就成为大家关心的头等大事。 有两类零点,一类是s=-2,-4,…-2n,…时的实零点,称为平凡零点;一类是复零点。黎曼猜想就是讲,这些复零点的实部都是,也就是所有复零点都在 这条直线(后称为临界线)上。
这个看起来简单的问题并不容易。从历史上看,求多项式的的零点特别是求代数方程的复根都不是简单的问题。一个特殊函数的零点也不太容易找到。在85年前,哈代首先证明这条临界线上有无穷多个零点。10年前我们知道有2/5的复零点都在这条线上,而且这条线外至今也没有发现复零点,因此,黎曼猜想是对是错还在未定之中。
这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想。在这个猜想上稍有突破,就有不少重大成果。200年前高斯提出的素数定理就是在100年前由于黎曼猜想的一个重大突破而证明的。当时只是证明复零点都在临界线附近,如果黎曼猜想被完全证明,整个解析数论将取得全面进展。
更重要的是,在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种 函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展。可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一。
⑼ 数学领域中还有哪些数学猜想,收集一些整理出来
很多很多.例如:
1、求:(1/1)^3+(1/2)^3+(1/3)^3+(1/4)^3+(1/5)^3+…+(1/n)^3=?
更一般地:当k为奇数时,
求:(1/1)^k+(1/2)^k+(1/3)^k+(1/4)^k+(1/5)^k+…+(1/n)^k=?
欧拉已经求出了:
(1/1)^2+(1/2)^2+(1/3)^2+(1/4)^2+(1/5)^2+ … +(1/n)^2=(π^2)/6
并且给出了当k为偶数时的表达式.
于是,于是他提出了上述问题.
2、e+π的超越性:
背景:此题为希尔伯特第7问题中的一个特例.
已经证明了e^π的超越性,却至今未有人证明e+π的超越性.
3、素数问题(又称黎曼猜想).
证明:
ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + … ,(s属于复数域)
所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2.
背景:此为希尔伯特第8问题.
现已证明:ζ(s)函数中,前300万个零点确实符合猜想.
引申的问题是:素数的表达公式?素数的本质是什么?
4、 存在奇完全数吗?
背景:
所谓完全数,就是等于其因子的和的数.
前三个完全数是:
6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124+248
目前已知的32个完全数全部是偶数.
1973年得到的结论是如果n为奇完全数,则:
n>10^50
5、 除了8=2^3,9=3^2外,再没有两个连续的整数可表为其他正整数的方幂了吗?
背景:
这是卡塔兰猜想(1842).
1962年我国数学家柯召独立证明了不存在连续三个整数可表为其它正整数的方幂.
1976年,荷兰数学家证明了大于某个数的任何两个正整数幂都不连续.因此只要检查小于这个数的任意正整数幂是否有连续的就行了.
但是,由于这个数太大,有500多位,已超出计算机的计算范围.
所以,这个猜想几乎是正确的,但是至今无人能够证实.
6、 任给一个正整数n,如果n为偶数,就将它变为n/2,如果除后变为奇数,则将它乘3加1(即3n+1).不断重复这样的运算,经过有限步后,一定可以得到1吗?
背景:
这角古猜想(1930).
人们通过大量的验算,从来没有发现反例,但没有人能证明.
三 希尔伯特23问题里尚未解决的问题.
1、问题1连续统假设.
全体正整数(被称为可数集)的基数 和实数集合(被称为连续统)的基数c之间没有其它基数.
背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪.
1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的.
所以,至今未有人知道,此假设到底是对还是错.
2、问题2 算术公理相容性.
背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭.
3、 问题7 某些数的无理性和超越性.
见上面 二 的 2
5、 问题 8 素数问题.
见上面 二 的 3
6、 问题 11 系数为任意代数数的二次型.
背景:德国和法国数学家在60年代曾取得重大进展.
7、 问题 12 阿贝尔域上的克罗内克定理在任意代数有理域上的推广.
背景:此问题只有些零散的结果,离彻底解决还十分遥远.
8、 问题13 仅用二元函数解一般7次代数方程的不可能性.
背景:1957苏联数学家解决了连续函数情形.如要求是解析函数则此问题尚未完全解决.
9、 问题15 舒伯特计数演算的严格基础.
背景: 代数簌交点的个数问题.和代数几何学有关.
10、 问题 16 代数曲线和曲面的拓扑.
要求代数曲线含有闭的分枝曲线的最大数目.和微分方程的极限环的最多个数和相对位置.
11、 问题 18 用全等多面体来构造空间.
无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决.
12、 问题 20 一般边值问题.
偏微分方程的边值问题,正在蓬勃发展.
13、 问题 23 变分法的进一步发展.
四 千禧七大难题
2000年美国克雷数学促进研究所提出.为了纪念百年前希尔伯特提出的23问题.每一道题的赏金均为百万美金.
1、 黎曼猜想.
见 二 的 3
透过此猜想,数学家认为可以解决素数分布之谜.
这个问题是希尔伯特23个问题中还没有解决的问题.透过研究黎曼猜想数
学家们认为除了能解开质数分布之谜外,对于解析数论、函数理论、
椭圆函数论、群论、质数检验等都将会有实质的影响.
2、杨-密尔斯理论与质量漏洞猜想(Yang-Mills Theory and Mass Gap
Hypothesis)
西元1954 年杨振宁与密尔斯提出杨-密尔斯规范理论,杨振宁由
数学开始,提出一个具有规范性的理论架构,后来逐渐发展成为量子
物理之重要理论,也使得他成为近代物理奠基的重要人物.
杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们
碰到的困难是这个粒子的质量的问题.他们从数学上所推导的结果
是,这个粒子具有电荷但没有质量.然而,困难的是如果这一有电荷
的粒子是没有质量的,那么为什么没有任何实验证据呢?而如果假定
该粒子有质量,规范对称性就会被破坏.一般物理学家是相信有质
量,因此如何填补这个漏洞就是相当具挑战性的数学问题.
3、P 问题对NP 问题(The P Versus NP Problems)
随着计算尺寸的增大,计算时间会以多项式方式增加的型式的问题叫做“P 问题”.
P 问题的P 是Polynomial Time(多项式时间)的头一个字母.已
知尺寸为n,如果能决定计算时间在cnd (c 、d 为正实数) 时间以下
就可以或不行时,我们就称之为“多项式时间决定法”.而能用这个
算法解的问题就是P 问题.反之若有其他因素,例如第六感参与进来
的算法就叫做“非决定性算法”,这类的问题就是“NP 问题”,NP 是
Non deterministic Polynomial time (非决定性多项式时间)的缩写.
由定义来说,P 问题是NP 问题的一部份.但是否NP 问题里面有
些不属于P 问题等级的东西呢?或者NP 问题终究也成为P 问题?这
就是相当着名的PNP 问题.
4、.纳维尔–史托克方程(Navier–Stokes Equations)
因为尤拉方程太过简化所以寻求作修正,在修正的过程中产生了
新的结果.法国工程师纳维尔及英国数学家史托克经过了严格的数学
推导,将黏性项也考虑进去得到的就是纳维尔–史托克方程.
自从西元1943 年法国数学家勒雷(Leray)证明了纳维尔–史托
克方程的全时间弱解(global weak solution)之后,人们一直想知道
的是此解是否唯一?得到的结果是:如果事先假设纳维尔–史托克方
程的解是强解(strong solution),则解是唯一.所以此问题变成:弱解与强解之间的差距有多大,有没有可能弱解会等于强解?换句话说,是不是能得到纳维尔–史托克方程的全时间平滑解?再者就是证
明其解在有限时间内会爆掉(blow up in finite time).
解决此问题不仅对数学还有对物理与航太工程有贡献,特别是乱
流(turbulence)都会有决定性的影响,另外纳维尔–史托克方程与奥
地利伟大物理学家波兹曼的波兹曼方程也有密切的关系,研究纳维
尔–史托克(尤拉)方程与波兹曼方程(Boltzmann Equations)两
者之关系的学问叫做流体极限(hydrodynamics limit),由此可见纳
维尔–史托克方程本身有非常丰富之内涵.
5.庞加莱臆测(Poincare Conjecture)
庞加莱臆测是拓朴学的大问题.用数学界的行话来说:单连通的
三维闭流形与三维球面同胚.
从数学的意义上说这是一个看似简单却又非
常困难的问题,自庞加莱在西元1904 年提出之
后,吸引许多优秀的数学家投入这个研究主题.
庞加莱(图4)臆测提出不久,数学们自然的将
之推广到高维空间(n4),我们称之为广义庞加莱臆测:单连通的
≥
n(n4)维闭流形,如果与n
≥ 维球面有相同的基本群(fundamental group)则必与n维球面同胚.
经过近60 年后,西元1961 年,美国数学家斯麦尔(Smale)以
巧妙的方法,他忽略三维、四维的困难,直接证明五维(n5)以上的
≥
广义庞加莱臆测,他因此获得西元1966 年的费尔兹奖.经过20年之
后,另一个美国数学家佛瑞曼(Freedman)则证明了四维的庞加莱臆
测,并于西元1986年因为这个成就获得费尔兹奖.但是对于我们真
正居住的三维空间(n3),在当时仍然是一个未解之谜.
=
一直到西元2003 年4 月,俄罗斯数学家斐雷曼(Perelman)于
麻省理工学院做了三场演讲,在会中他回答了许多数学家的疑问,许
多迹象显示斐雷曼可能已经破解庞加莱臆测.数天后“纽约时报”首
次以“俄国人解决了着名的数学问题”为题向公众披露此一消息.同
日深具影响力的数学网站MathWorld 刊出的头条文章为“庞加莱臆测
被证明了,这次是真的!”[14].
数学家们的审查将到2005年才能完成,到目前为止,尚未发现
斐雷曼无法领取克雷数学研究所之百万美金的漏洞.
6.白之与斯温纳顿-戴尔臆测(Birch and Swinnerton-Dyer
Conjecture)
一般的椭圆曲线方程式 y^2=x^3+ax+b ,在计算椭圆之弧长时
就会遇见这种曲线.自50 年代以来,数学家便发现椭圆曲线与数论、
几何、密码学等有着密切的关系.例如:怀尔斯(Wiles)证明费马
最后定理,其中一个关键步骤就是用到椭圆曲线与模形式(molarform)之关系-即谷山-志村猜想,白之与斯温纳顿-戴尔臆测就是与
椭圆曲线有关.
60年代英国剑桥大学的白之与斯温纳顿-戴尔利用电脑计算一些
多项式方程式的有理数解.通常会有无穷多解,然而要如何计算无限
呢?其解法是先分类,典型的数学方法是同余(congruence)这个观念
并借此得同余类(congruence class)即被一个数除之后的余数,无穷
多个数不可能每个都要.数学家自然的选择了质数,所以这个问题与
黎曼猜想之Zeta 函数有关.经由长时间大量的计算与资料收集,他
们观察出一些规律与模式,因而提出这个猜测.他们从电脑计算之结
果断言:椭圆曲线会有无穷多个有理点,若且唯若附于曲线上面的
Zeta 函数ζ (s) = 时取值为0,即ζ (1)
;当s1= 0
7.霍奇臆测(Hodge Conjecture)
“任意在非奇异投影代数曲体上的调和微分形式,都是代数圆之
上同调类的有理组合.”
最后的这个难题,虽不是千禧七大难题中最困难的问题,但却可
能是最不容易被一般人所了解的.因为其中有太多高深专业而且抽象
参考资料:《数学的100个基本问题》《数学与文化》《希尔伯特23个数学问题回顾
⑽ 什么是黎曼猜想急
黎曼猜想
这是1859年由德国大数学家黎曼提出的几个猜想之一,而其他猜想均已证明。这个猜想是指黎曼 函数:
的非平凡零点都在 的直线上。
在数学中我们碰到过许多函数,最常见的是多项式和三角函数。多项式 的零点也就是代数方程 =0的根。根据代数基本定理,n次代数方程有n个根,它们可以是实根也可以是复根。因此,多项式函数有两种表示方法,即
当s为大于1的实数时, 为收敛的无穷级数,欧拉仿照多项式情形把它表示为乘积的情形,这时是无穷乘积,而且也不是零点的形式:
但是,这样的 用处不大,黎曼把它开拓到整个复数平面,成为复变量s就包含非常多的信息。正如多项式的情形一样,函数的信息大部分包含在其零点的信息当中,因此, 的零点就成为大家关心的头等大事。 有两类零点,一类是s=-2,-4,…-2n,…时的实零点,称为平凡零点;一类是复零点。黎曼猜想就是讲,这些复零点的实部都是,也就是所有复零点都在 这条直线(后称为临界线)上。
这个看起来简单的问题并不容易。从历史上看,求多项式的的零点特别是求代数方程的复根都不是简单的问题。一个特殊函数的零点也不太容易找到。在85年前,哈代首先证明这条临界线上有无穷多个零点。10年前我们知道有2/5的复零点都在这条线上,而且这条线外至今也没有发现复零点,因此,黎曼猜想是对是错还在未定之中。
这个简单的特殊函数在数学上有重大意义,正因为如此,黎曼猜想总是被当成数一数二的重要猜想。在这个猜想上稍有突破,就有不少重大成果。200年前高斯提出的素数定理就是在100年前由于黎曼猜想的一个重大突破而证明的。当时只是证明复零点都在临界线附近,如果黎曼猜想被完全证明,整个解析数论将取得全面进展。
更重要的是,在代数数论、代数几何、微分几何、动力系统理论等学科中都引入各种 函数和它们的推广L函数,它们各有相应的“黎曼猜想”,其中有的黎曼猜想已经得到证明,使得该分支获得突破性的进展。可以设想,黎曼猜想及其各种推广是21世纪的中心的问题之一。