导航:首页 > 数字科学 > 小学数学的十大核心的创新意识概念是什么

小学数学的十大核心的创新意识概念是什么

发布时间:2022-07-08 04:51:28

1. 小学数学10个核心概念

十个核心概念有:①数感、②符号意识、③空间观念、④几何直观、⑤数据分析观念、⑥运算能力、⑦推理能力、⑧模型思想、⑨应用意识、⑩创新意识。

2. 义务教育阶段数学课程标准的十大核心概念

在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵 在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。2、 符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。3、 空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。4、 几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。5、 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。6、 运算能力是指能够根据法则和运算正确的进行运算的能力。培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。7、 推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算,是这样一个过程。换句话说,从思维形式的角度,是从一般到特殊这样一个过程,在几何的证明当中,实际上都是这样一种推理的形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理相不一样的地方,它往往是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测是一个可能性结论。8、 模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。9、 应用意识就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用一部分数学,去解决另一个数学里的问题。10、 创新意识培养是现代数学教育的基本任务,应体现在数学教与学的过程之中,学生自己发现和提出问题是创新的基础,独立思考、学会思考是创新的核心。

3. 如何理解小学数学新课标中的核心概念

在标准当中设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。 在目标里边,可以看到了对这些核心概念的一些具体解释,相当于目标的一些要素。但是同时也能发现它们之间是密切联系的,所以核心概念有一个承上启下的作用。上面连着目标,下面联系着内容,是非常重要的,所以也把它称为核心概念。(一)为什么要设计核心概念 在这次课程标准修订过程中,除了前面说的这些理念,怎么设计这个课程标准,也进行了一个讨论,在提出设计的过程中有两件事情是重要的,一个就是希望课程的这些东西,形成一个整体,如何整体的把握课程需要反复强调。从知识技能,从过程方法,从情感态度价值观,几个方面来构架整个数学课程。这是一个渗透在整个标准的研制过程中。第二件事,就是在研制的过程中,希望能够凸显出需要给予高度的重视的数学内容,因为它反应了数学最要紧的东西,最本质的东西,不仅应该把它当做目标,也应该把它和内容有机的结合起来。记得当时在讨论的时候,就在过去义务教育的基础上,能不能用一些词,把这些东西彰显出来,经过讨论,提出了十个核心概念。(二)核心概念的理解 1.数感 数感在实验稿里边就提出来,在修订稿里边又进一步明确了数感的含义。在这里边,有这样两句话,来帮助理解数感。数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。这是一层含义,是一种感悟,对那些数量、数量关系和估算结果的估计这种感悟。然后第二句话的含义是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。这两层意思都是数感,什么是数感?数感是一种感悟,是对数量、对数量关系结果估计的感悟;第二层意思就是数感的功能。学习数学是要会去思考问题,一个本质的问题就是要建立数学思想,而数学思想一个核心就是抽象,而对数的抽象认识,又是最基本。 2.符号意识 关于符号意识,注意到它在用词上,标准的修改稿和实验稿有一个区别,原来是叫符号感,现在把它称为叫符号意识。因为符号感更多的是感知,是一个最基本的层次。而符号意识对学生理解要求更高一些。在标准里边它是这样来表述的,符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。 还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。所以标准上,大概用分号隔开是两层意思,一个是会表示,另外一个进行分开进行推理,得到一般性的结论。符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要形式。 3.空间观念和几何直观 空间观念是原来大纲里有的,现在是在原来的基础上做了进一步的刻画。具体是这么描述的,空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。这是对于空间观念的一个刻画。 空间观念和几何直观这两个概几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。 4.数据分析观念 数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。 5.运算能力 运算能力,标准中是这样说的,只要是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。运算始终是中小学教学里边非常重要的组成部分,对数的认识,数的运算,一直都占很大的篇幅,另外也是学生学习数学的一个重要的标志。 6.推理能力 推理能力是标准实验稿中就提出的一个核心概念,在修改稿当中,仍然也保留了这样一个核心概念。经过这几年的实验,老师们对推理能力,应该有了一个比较全面的认识,以往在谈推理的时候,老师首先想到就是演绎推理和逻辑推理,而现在推理能力实际上包含了两个方面。首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。 7.模型思想 首先说一下标准的解释,就是模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。这个基本上模型思想概括的比较清楚。 8.应用意识和创新意识 首先是应用意识,应用意识说白了就是强调数学和现实的联系,数学和其他学科的联系,如何运用所学到的数学,去解决现实中和其他学科中的一些问题,当然也包括运用数学知识去解决另一个数学问题。 从某种意义上,越小的孩子,他越有创新,小孩子的兴趣,小孩子对问题的敏感性,他能提出很多很多成人可能都难以解决的问题,其实他本身就是创新。

4. 新颁发的《数学课程标准》提出了哪十个核心概念

《数学课程标准(2011年版)》在“设计思路”的第(三)部分指出:在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想,以及应用意识、创新意识。这10个核心概念,揭示了课程具体内容与基本数学思想之间的联系。对此,广大教师在教学实践中应当加以充分的关注。

5. 数学新课标中提出的10个核心概念如何理解

课程标准把课程内容分为4个部分:数与代数、图形与几何、统计与概率、综合与实践。又提出了与内容有关的10个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想以及应用意识和创新意识,并且对每一个核心概念都给出了较为明确的解释。1、对数感的认识。数感是一种感悟,是对数量、对数量关系结果估计的感悟;数感的功能是建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。而形成数感是一个长期的过程,不是一天两天就能够让学生感受的到的,或者说能够在这方面有很好的感觉,需要在活动当中,逐渐的去积累,对数的这样一种认识。换句话说要积累相关的经验,所以这点,可能还需要老师在教学当中给予更多的关注。2、对符号意识的认识。符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。就是用符号来表示,表示什么,表示数,数量关系和变化规律,这是一层意思。还有一层意思,就是知道使用符号可以进行运算和推理,另外可以获得一个结论,获得结论具有一般性。3、对空间观念的认识。空间观念是实物和图形之间的关系,是两个方向的关系,这就是说,通过实物,根据实物来抽象出几何图形,这是一个方向。另外一个就是根据几何图形想象出所描述的实际物体,在这里边一个是抽象,一个是想象。4、对几何直观的认识。几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。在帮助学生建立几何直观时,第一要充分的发挥图形给带来的好处。第二,要让孩子养成一个画图的好习惯。第三,重视变换,让图形动起来,把握图形与图形之间的关系。第四,要在学生的头脑中留住些图形。5、对数据分析观念认识。数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。6、对运算能力的认识。运算能力是指能够根据法则和运算进行正确的运算的能力。培养运算能力有助于学生理解运算,寻求合理、简洁的运算途径解决问题。应当淡化对运算的熟练程度的要求,选择正确的计算方法,准确地得到运算结果,比运算的熟练程度更重要。应当重视学生是否理解了运算的道理,是否能准确地得出运算的结果,而不是单纯地看运算的速度。”7、对推理能力的认识。首先推理是数学的基本思维方式,也是人们学习和生活当中,经常使用的一种思维方式,推理一般包括合情推理和演绎推理,合情推理的外延包含了两个大方面,一个是合情推理,一个是演绎推理。演绎推理是从已知的事实出发,按照一些确定的规则,然后进行逻辑的推理,进行证明和计算。换句话说,从思维形式的角度,是从一般到特殊的过程,在几何的证明当中,实际上都是这样一种推理形式。合情推理是从已有的事实出发,评论一些经验、直觉,通过归纳和类比等等这样一些形式,来进行推断,来获得一些可能性结论这样一种思维方式。和演绎推理不一样的是从特殊到一般这样一种推理,所以合情推理得到的结论,知道不一定是对的,通常可能称之为猜想、推测,是一个可能性结论。但是合情推理在数学整个发展过程当中,包括在学生学习数学和今后的未来的社会生产实践和生活当中,都是特别重要的。8、对模型思想的认识。模型思想的建立,使学生体会和理解数学与外物世界联系的基本途径,建立和求解模型的过程包括,从现实生活或具体情境中,抽象出数学问题,用数学符号,建立方程、不等式、函数等数学模型的数量关系和变化规律,然后求出结果,并讨论结果的意义。这些内容的学习有助于学生初步的形成模型的思想,提高学习数学的兴趣和应用意识。数学有两件事情很重要,一件事情就是解决问题,所以要形成模型;另外一件事,要从实际情境中找到解决问题的模型。一个是归纳的过程,一个是演绎的过程。9、对应用意识的认识。应用意识有两个方面的含义,一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。10、对创新意识的认识。创新是一个永恒的主题,创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。

6. 2011年小学数学新课标十大核心概念是什么

(2011版新课标)小学数学新课标十大核心概念
一、数感
二、符号意识
三、空间观念
四、几何直观
五、数据分析观念
六、运算能力
七、推理能力
八、模型思想
九、应用意识
十、创新意识

7. 数学课程标准的十个核心词是什么

数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。

8. 数学新课程标准的核心概念有哪些

2011版《数学课程标准》,修订组通过广泛听取各方意见和建议,对《课程标准实验稿》中提出的6个核心概念“数感、符号感、空间观念、统计观念、应用意识和推理能力”做了调整。共提出了10个核心概念。这就是:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
为什么提出核心概念?主要是由于在研制课程标准的过程中,感觉在数学教学中,应该凸显一些在整个数学教学中最重要的东西,那么用什么样的方式,把这些最重要的东西凸显出来?经过认真思考、讨论,一致认为应该用一些核心词或者叫做核心概念来体现,最后确定为核心概念。核心概念的确定,对于教师教学和学生的学习都具有极为重要的意义。一是这些核心概念的内涵在性质上都是体现学习主体——学生的特征,所涉及的都是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等,因此,可以认为,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。
二是《课程标准》将这些核心概念放在课程内容设计栏目下提出,是想表明这些概念不是设计者超乎于数学课程内容之上外加的,而是实实在在蕴涵于具体的课程内容之中,或者是与课程内容紧密结合的。三是核心概念从本质上体现的教是数学的基本思想,即指对数学及其对象、数学概念和数学结构及数学方法的本质性认识。四是这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。
《课程标准》对每一个核心概念都作出了较为明确的阐述,这有助于教师更好地把握课程目标、深刻理解课程内容,同时对于数学课程内容的选择和教学方法的改革也有重要的指导意义。

9. 数学核心素养包括哪些内容

小学数学的10个核心素养:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。数学核心素养还对于学生的应用能力的提高有着极大的益处。有助于学生培养实事求是的精神,按照一定思维方式解决问题。

教育以人为本,教师的职责是教学生先做人,后求知。所以教师要用心备学生。想培养出具有核心素养的学生,必须先了解你的学生离具备核心素养还差多少。教师应把培养学生的核心素养作为数学课堂教学的重要内容,切实指导学生积极参加实践性探究活动。

数学是每一个孩子从求学开始都必须要学习的主课,它教给孩子们的不应只是冰冷的数学知识,更重要是要教给学生用数学的眼光看待问题。

学生的数学核心素养不是通过一节课、两节课就可以培养的,对于低段的学生,教师应该更加耐心、细致地进行引导。中国学生发展核心素养,以科学性、时代性和民族性为基本原则,以培养“全面发展的人”为核心,分为文化基础、自主发展、社会参与三个方面。

10. 小学数学创新意识该怎么写

创新教育是教育发展的趋势。培养小学生的创新意识是创新教育的一个重要组成部分,具有十分重要的意义。创新意识是《标准(2011年版)》中新增的核心概念,创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。小学数学教学是培养学生创新意识的一个重要途径,同时也具有明显的优势。就数学这门学科培养学生的创新意识而言,主要是指:“对自然界和社会中的数学现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,进行探索和研究。”

1
学生自己发现和提出问题是创新的基础
“问题”是创新的起点,是数学研究的核心。问题提出是创新式教学的重要标志,是研讨式教学的重要的组织方式,是数学活动的重要形式,是提高学生问题解决能力的重要方法,是探测学生数学理解的重要渠道,同时也是培养学生数学气质的重要手段。数学的发展展示着数学创新,而数学创新始于数学问题的提出,因而,数学问题的提出成了数学发展的源头。当学生学会提出问题时,学生不但能获得一些基本的能力和方法,而且也会形成一种创新意识和实践能力。
提出数学问题的能力是指学生从数学情境出发,从数学的角度主动参与,积极思考,自由探索,敢于质疑和猜想,大胆提出数学问题、揭示数学问题,研究、解决数学问题的一种创造性思维特征和心理特征。对学生提出问题水平的考查可以从以下几个方面人手:问题的数量——思维的流畅性;问题的种类——思维的灵活性;问题的新颖性——思维的独创性。

2
独立思考、学会思考是创新的核心
独立思考是指人们在社会实践中自主运用自己的头脑进行能动思维的过程,即在坚持观察客观事物的基础上充分发挥主体的自主意识和自主能力,独立地、能动地思维认识的过程,是指不仰仗他人意志,不受他人干扰,自主地对某个问题进行较为深刻而周密的思维活动。独立思考能力是一种综合能力,它表明个体善于摆脱思维的盲从性,能面对不同的情境、运用不同的思维方式、方法和技巧独立地提出问题,独立地、创造性地进行研究,独立地探索解决问题的新途径。
教学过程中,要注意培养学生使其思考问题和解决问题的方式或结果新颖、独特,具有创造性,培养学生能独立地发现问题,解决问题,勇于创新,敢于突破常规的思考方法和解题程式,大胆提出新的见解和采用新的方法。

3
归纳概括得到猜想和规律,并加以验证,是创新的重要方法
小学阶段归纳概括的过程如下:
第一,从特例问题到猜想数学结论,即从特殊到一般的思维过程。通过少数的特例感悟出它们的共同特征,抽象形成概念、法则,形成规律性认识,用概括方法将抽象概念、法则形式化。要培养学生学会运用观察、分析与比较、抽象与概括、分类等思维方法。
第二,验证,即检验猜想正确性的思维过程。由归纳概括所得到的结论具有或然性,因而,验证结论就成为认识过程中不可缺少的一个环节。验证结论包括在更大的范围内寻找特例,特例检验一般会出现两种情形:其一,继续出现支持猜想的特例;其二,出现不支持猜想的特例,即出现了否定猜想的反例,此时猜想被推翻。

阅读全文

与小学数学的十大核心的创新意识概念是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071