㈠ 数学中的映射是什么
在数学里,映射是个术语,指两个元素的集之间元素相互对应的关系。
映射或投影也用于定义数学和相关领域的函数。函数是从非空集到非空集的映射,并且只能是一对一或多对一映射。映射在不同的域中有许多名称,它们本质上是相同的。如函数、运算符等。
函数是两组数字之间的映射,而其他映射不是函数。一对一映射(双射)是一种特殊的映射,即两组元素之间的唯一对应关系。
(1)数学映射怎么对扩展阅读
映射计算可以实现跨维对应。相应的微积分属于纯数字计算,不能实现多维对应。微分仿真可以实现这一领域的复杂仿真。映射可以对无关集执行近似运算,而微积分只能在大量连续相关集内执行精确运算。
映射的分类是根据映射的结果来进行的,主要的分类有:根据结果的几何性质分类、根据结果的分析性质分类、同时考虑几何与分析性质来进行的。几何特性分为全投影和非全投影;分析特性分为单投影(一对一)和非单投影;几何特性和分析特性也分为全单投影。
㈡ 数学映射该怎么理解
映射是函数概念的推广,
函数是数集间的对应关系,映射是集合间的对应关系。
如f:A->B的映射
注意理解A中每个元素a在B中有一个像f(a)
也可A中有多个元素对应同一个像
集合B中可没A中的元素和它对应。
㈢ 高中数学中的映射到底是怎么一回事啊
1、在高中数学里,映射是个术语,指两个元素的集之间元素相互“对应”的关系,为名词。映射,或者射影,在数学及相关的领域经常等同于函数。
基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。
2、应用
按照映射的定义,下面的对应都是映射。
(1)设A={1,2,3,4},B={3,5,7,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素对应,这个对应是集合A到集合B的映射。
(2)设A=N*,B={0,1},集合A中的元素按照对应关系“x除以2得的余数”和集合B中的元素对应,这个对应是集合A到集合B的映射。
(3)设A={x|x是三角形},B={y|y>0},集合A中的元素x按照对应关系“计算面积”和集合B中的元素对应,这个对应是集合A到集合B的映射。
(4)设A=R,B={直线上的点},按照建立数轴的方法,是A中的数x与B中的点P对应,这个对应是集合A到集合B的映射。
(5)设A={P|P是直角坐标系中的点},B={(x,y)|x∈R,y∈R},按照建立平面直角坐标系的方法,是A中的点P与B中的有序实数对(x,y)对应,这个对应是集合A到集合B的映射。
㈣ 高中数学里映射的概念究竟是什么意思
映射概念:在数学里,映射则是个术语,指两个元素的集之间元素相互“对应”的关系,为名词;亦指“形成对应关系”这一个动作,动词。
“映射”或者“投影”,需要预先定义投影法则部分的函数后进行运算。因此“映射”计算可以实现跨维度对应。相应的微积分属于纯数字计算无法实现跨维度对应,运用微分模拟可以实现本维度内的复杂模拟。 映射可以对非相关的多个集合进行对应的近似运算,而微积分只能在一个连续相关的大集合内进行精确运算。
相同点:
(1)函数与映射都是两个非空集合中元素的对应关系;
(2)函数与映射的对应都具有方向性;
(3)A中元素具有任意性,B中元素具有唯一性;即A中任意元素B中都有唯一元素与之对应.(多值函数除外,这类函数一般不纳入函数的范畴)
区别:
1、函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。
2、函数要求每个值域都有相应的定义域与其对应,也就是说,值域这个集合不能有剩余元素,而映射可以有剩余。
但是不可以把物理学看作是数学在现实世界的映射。
这里需要先理清楚物理学和数学分别是什么。物理学是研究自然界中事物运动变化规律的学科,而数学则是研究如何用最简练的方法表达逻辑推论的学科。这里最大的差别就是,物理学研究的是实在的事物,而数学研究的是抽象化的逻辑概念。所以就会产生下面一个逻辑关系:
一切实在的事物都可以抽象出对应的逻辑概念
特定的逻辑概念不一定能有实在的事物与其对应
根据上面的逻辑,就可以得出下面的一个推论:
一切物理学的结论都可以用数学的方式进行表达
数学表达不一定能有具体的物理学结论与其对应
根据上述结论,可以看出物理学与数学并不满足映射关系的定义。
另外从功能上来说,数学并不是科学,而是一门语言或一种工具。这样从语言的角度上来看,也同样有下面的关系:
一切实在的事物都能找到可对其进行描述的语言
特定的词汇不一定能有实在的事物与其对应
因此从这个角度看,数学与物理学,或者说数学与现实世界,并不满足映射关系的定义。
㈤ 高中数学中什么叫“映射”
1、在高中数学里,映射是个术语,指两个元素的集之间元素相互“对应”的关系,为名词。映射,或者射影,在数学及相关的领域经常等同于函数。 基于此,部分映射就相当于部分函数,而完全映射相当于完全函数。函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。
㈥ 数学映射怎么做
㈦ 数学中映射到底是什么定义域、值域、培域它们的关系是什么和定义该如何理解
映射,就是自变量x到因变量y的一种对应关系,就是关系 比如y=x^2,映射就是平方,定义域:自变量x可以取的值的集合 值域:因变量y可以得到的值的集合。
(1)函数与映射都是两个非空集合中元素的对应关系。
(2)函数与映射的对应都具有方向性。
(3)A中元素具有任意性,B中元素具有唯一性;即A中任意元素B中都有唯一元素与之对应。(多值函数除外,这类函数一般不纳入函数的范畴)。
函数
的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
㈧ 数学映射是什么定义
你好!
在数学上,映射则是个术语,指两个元素集之间元素相互“对应”的关系,名词;也指“形成对应关系”这一个动作,动词。
举例:设A={1,2,3,4},B={3,5,7,9},集合A中的元素x按照对应关系“乘2加1”和集合B中的元素对应,这个对应是集合A到集合B的映射。
㈨ 数学函数的映射到底是什么
映射与函数的区别,在中学阶段,就是:映射可以是任意集合,而函数只能是两个非空数集之间的映射,所以说,函数是特殊的映射....
而在映射的定义中,只要求A中任意一个元素a在B中都能找到唯一的一个元素与A中的这个元素a对应.而并没要求B中的所有元素都要被a中的元素对应,就是说,B中有些元素可以不被A中的元素对应...在B中,与A中的元素相对应的称之为象,即,B中的元素除了有象之外,还可以存在不是象的元素
,而所有的象构成的集合称为函数的值域,那么当然值域中所有的元素都在集合B中,而B中可以有元素不在值域中,所以说值域是B的子集