① 高中数学的特殊符号!
很高兴为您解答
横着的8是无穷大的意思。分为正无穷,负无穷
log是对数
E指的是存在(常用在函数里) 像弧线一样是“属于”符号。用在函数里。
U是集合里的全集。
若满意,求采纳,嘿嘿~~
② 高中数学的特殊符号!
很高兴为您解答
横着的8是
无穷大
的意思。分为正无穷,负无穷
log是
对数
E指的是存在(常用在
函数
里)
像弧线一样是“属于”符号。用在函数里。
U是集合里的
全集
。
若满意,求采纳,嘿嘿~~
③ 高中常用的数学符号有哪些
数学符号 如加号(+),减号(-),乘号(×或?),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∬)等。 关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≣”是大于或等于符号(也可写作“≤”),“≢”是小于或等于符号(也可写作“≥”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∠”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等。 结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∟), ∮因为,(一个脚站着的,站不住) ∭所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。 排列组合符号 C-组合数 A-排列数 N-元素的总个数 R-参与选择的元素个数 n!-阶乘 ,如5!=5×4×3×2×1=120 C-Combination- 组合 A-Arrangement-排列 φ 空集 ∈ 属于(不属于) |A| 集合A的点数 包含 (或下面加 ≠) 真包含 ∪ 集合的并运算 ∩ 集合的交运算 a ∈ A a属于集合A [a] 元素a 产生的循环群 I (i大写) 环,理想 Z/(n) 模n的同余类集合 r(R) 关系 R的自反闭包 s(R) 关系 的对称闭包
f:X→Y f是X到Y的函数 GCD(x,y) x,y最大公约数 LCM(x,y) x,y最小公倍数 C 复数集 N
自然数集: N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 数学符号的意义 符号(Symbol) 意义(Meaning) = 等于 is equal to ≠ 不等于 is not equal to < 小于 is less than > 大于 is greater than || 平行 is parallel to ≣ 大于等于 is greater than or equal to ≢ 小于等于 is less than or equal to ≡ 恒等于或同余 π 圆周率 |x| 绝对值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 远远大于号 << 远远小于号 ∞ 无穷大 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 x - floor(x) 小数部分 ∫f(x)dx 不定积分 ∫[a:b]f(x)dx a到b的定积分
④ 高中数学符号有哪些
1、加号,是用来表示正数或者加法数学符号。此符号还因为各种相对其他事物的类似之处而被赋予了丰富的抽象含义。加号属于第一级运算。
2、减号,是四则运算之一“减”的运算符号,也可表示将某事物从某事物中除去。同时也有负号的意义。加减运算是人类最早掌握的两种数学运算之一。
3、小于号,是数学中不等式运算符号的一种。是英国数学家哈利奥特在自己的《使用分析学》(Artis Analyticae Praxis)一书中首先使用了“<”和“>”符号,但是直到他去世十年之后1631年才发表。
4、除号,是个数学符号,是一个由一根短横线和横线两侧的两点构成的符号,其主要用来表示数学中的除法运算。除号可运用到数学、物理学、化学等多领域。
5、根号,是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
⑤ 高中数学里有一个符号是什么意思
在几何中,如楼上言,它代表圆。
不过看楼主的意思,它应该代表一种运算方式,(像加减乘除这样的叫做运算方式)
如果是这样的话,我可以负责任地说,高中数学里没有这个符号。一般都是在高中试题里,命题者利用这个符号临时创造一种运算方式(这完全由命题人设定,与符号本身没有任何关系),比如A⊙B=A×B-A+B,然后以此为背景命题。这是一种很常见的考法。因此可以说,这个符号是没有意义的。
⑥ 高中数学代数符号
是属于的意思,直线l在面α内,就用“l(属于,那个符号打不出来)α”表示,只能用于直线与面的位置关系,不能用于点与线的位置关系。
⑦ 高中数学符号有哪些
1、几何符号:
几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。
常用符号有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圆)。
2、代数符号:
代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、 ∫(积分)、 ≠ (不等于)、≤(小于等于)、 ≥(大于等于)、 ≈(约等于)、 ∞(无穷)。
3、运算符号:
运算符号是计算数学时所用的符号,计算符号有加号、减号、乘号、除号。
常用符号有:×(乘)、 ÷(除)、 √(根号)、 ±(加减)。
4、集合符号:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集。
常用符号有:∪(并)、 ∩(交)、 ∈(属于)。
5、特殊符号:
数学中常用某个特定的符号来表示某个元素。
常用符号有:∑(求和)、 π(圆周率)
6、希腊符号:
在数学中,希腊字母通常被用来表示常数、特殊函数和一些特定的变量。在数学领域,通常大写与小写的希腊字母所代表的意义都会有所分别,并且互不相关。
常用符号有:α (阿尔法)、β(贝塔)、 γ(伽马)、 δ(代尔塔)、 ε(埃普西龙)、 ζ (泽塔)、η (诶塔)、θ (西塔)、ι (埃欧塔)、κ(堪帕)、 λ(兰姆达)、 μ (谬)、ν
⑧ 高中数学所有符号及读法
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
% per cent 百分之…
∞ infinity 无限大号
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因为
∴ hence 所以
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ intersection of 并,合集
∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃 second 秒
⑨ 高中数学符号详细解释
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 自然对数
lg(x) 以2为底的对数
log(x) 常用对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
[P] P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,
如果f(n)是有结构式,f(n)应外引括号;
∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)],
如果f(n,r)是有结构式,f(n,r)应外引括号;
∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积,
如果f(n)是有结构式,f(n)应外引括号;
∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)],
如果f(n,r)是有结构式,f(n,r)应外引括号;
lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限,
如果f(x)是有结构式,f(x)应外引括号;
lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)],
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分,
如果f(x)是有结构式,f(x)应外引括号;
∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分,
如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;
∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,
如果A(n)是有结构式,A(n)应外引括号;
∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)],
如果A(n,r)是有结构式,A(n,r)应外引括号;
∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集,
如果A(n)是有结构式,A(n)应外引括号;
∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)],
如果A(n,r)是有结构式,A(n,r)应外引括号