导航:首页 > 数字科学 > 三年级下册数学长和宽是多少

三年级下册数学长和宽是多少

发布时间:2022-07-09 07:52:22

A. 三年级下册,数学周长是76厘米宽是八厘米那请问长和面积是几厘米

根据题中描述这是一个长方形,因为长方形周长=(长+宽)×2,已知宽是8厘米,所以求长方形的长列式:76÷2-8=38-8=30厘米,长方形的面积=30×8=240平方厘米。希望对你有帮助。

B. 3年级下册数学书的长和宽各是多少

宽:16.9厘米
长:23.8厘米

C. 量一量三年级数学书封面的长和宽(取整厘米),计算它的周长.

经测量三年级数学书封面的长和宽分别是:20厘米和14厘米,
(20+14)×2
=34×2
=68(厘米)
答:三年级数学书封面的周长是68厘米.

D. 三年级下册数学题,一个长方形的长60分米,宽是28分米,这个长方形的面积是多少

长方形的面积公式:S=长 x 宽=60 x 28=1680平方分米

E. 三年级下册数学的知识点

三年级数学(下册)知识要求归纳

第一单元 位置与方向
1、(东与西)相对,(南与北)相对,
(东南与西北)相对,(西南与东北)相对。
面南左为东,面北左为西,面东左为北,面西左为南。
2、地图通常是按(上北、下南、左西、右东)来绘制的。
通常所说的八个方向:东、西、南、北、东南、西北、西南、东北。
3、会看简单的路线图,会描述行走路线。(做题时先标出东 南 西 北。)
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走就到了哪里。(在转弯处要注意方向的变化)
判断一个地方在什么方向,先要找到一个为中心点(观测点) 处画“米”字符号,再进行判断。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:
①北斗星永远在北方。 ②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
我国地处北半球,树叶茂盛的一面是南方,树叶稀疏的一面是北方。

第二单元 除数是一位数的除法
1、只要是平均分就用(除 法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;最大的余数是除数减去1;最小的除数是余数加1;
最大的被除数=商×除数+最大的余数; 最小的被除数=商×除数+1;
(2)除法验算:→ 用乘法
没有余数的除法 有余数的除法
被除数÷除数=商 被除数÷除数=商……余数
商×除数=被除数 商×除数+余数=被除数
被除数÷商=除数 (被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;0乘以任何数都得0;
0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(最高位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数最高位上的数跟除数进行比较,当被除数最高位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数最高位上的数小于除数时,商的位数就是被除数的位数减去1。

第三单元 复式统计表
复式统计图的特点:有利于数据的比较,更容易分辨相同项目的区别。

第四单元 两位数乘两位数
1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
4、有大约字样的一般要估算。
5、凡是问够不够,能不能等的题目,都要三大步:
①计算、②比较、③答题。→ 别忘了比较这一步。
6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
7、相关公式: 因数×因数=积 积÷因数=另一个因数
运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

第五单元 面 积
1、物体的表面或封闭图形的大小,就是它们的面积。
封闭图形一周的长度叫周长。长度单位和面积单位的单位不同,无法比较。
2、比较两个图形面积的大小,要用统一的面积单位来测量。
3、①边长1厘米的正方形,面积是1平方厘米;
②边长1分米的正方形,面积是1平方分米;
③边长1米的正方形,面积是1平方米;
4、长方形:
长方形的面积=长×宽 长方形的周长=(长+宽)×2
求长:长=长方形面积÷宽 已知周长求长:长=长方形周长÷2-宽
求宽:宽=长方形面积÷长 已知周长求宽:宽=长方形周长÷2-长
正方形:
正方形的面积=边长×边长 正方形的周长=边长×4
边长:边长=正方形面积÷边长 已知周长求边长:边长=正方形周长÷4
5、长度单位之间的进率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。
7、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑A盘或电线插座)、1平方米(教室侧面的小展板)。
8、区分长度单位和面积单位的不同:长度单位测量线段的长短,面积单位测量面的大小。
(二)长方形、正方形的面积计算
1、归类:
什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)
什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地砖、裁手帕等等)
2、长方形或正方形纸的剪或拼。
有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。
3、刷墙的(有的中间有黑板、窗户等):求要用到的面积等于大面积减去小面积。
4、常用的面积单位有:平方厘米、平方分米、平方米。
相邻两个常用的面积单位之间的进率是 100 。
测量房间、菜园、教室、操场的面积通常用平方米为单位 。
6、面积单位换算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米

第六单元 年、月、日
1、重要的日子:1月1日元旦节,3月8日妇女节,3月12日植树节,5月1日劳动节,5月4日青年节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节。
2、一、三、五、七、八、十、腊,三十一天永不差,四、六、九、冬三十整,平年二月二十八,闰年二月把一加。
3、季度: 一年分四季度,每3个月为一季度。
一、二、三月是 第一季度(平年有90天,闰年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,闰年上半年182天,下半年都是184天。
4、求有多少个星期?用天数÷7。→ 如:31天 31÷7=4(个)……3(天)
平年一年有52个星期零1天,闰年一年有52个星期零2天。
5、判断平年、闰年的方法:
① 一般用公历年份÷4,正好余数是0,就是闰年;
② 公历年份是整百的÷400,余数是0,就是闰年。
公历年份是整百的闰年有:1200年,1600年,2000年,2400年;
6、经过的天数的计算:公式→结束时间—开始时间+1=经过的天数;
(二)24计时法
1、普通计时法转化为24时计时法: ①从凌晨0时到中午12时,时刻相同,去掉时刻前的时间限制词。 ②下午1时到晚上12时,时刻加上12,并去掉时刻前的时间限制词。 2、24时计时法转化为普通计时法: ①从凌晨0时到中午12时在时间前加上凌晨、早上或上午等时间限制词。 ②13时到24时,用时刻减去12,再加下午、傍晚或晚上等时间限制词。 3、计算经过时间:用结束时刻—开始时刻=经过时间。时刻—时刻=时间段
4、时间单位进率:1世纪=100年 1年=12个月 1天=24小时
1时=60分 1分=60秒
第七单元 小数的初步认识
1、比较两个小数的大小,先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推。
2、计算小数加、减法时,一定要先对齐小数点再相加、减。
3、分母是10的分数写成一位小数,分母是100的分数写成两位小数。
4、小数读写法:① 读法→汉字形式;② 写法→阿拉伯数字。
5、小数不一定比整数小。

第八单元 数学广角----搭配

有顺序地组数、搭配连线,才能保证不重复、不遗漏。

F. 小学三年级数学 一个长方形的周长是40厘米,宽比长短4厘米,那么,这个长方形的长和宽分别是多少请5分钟之内

因为(长+宽)×2=长方形周长。所以列得以下方程。
解:设长x厘米,宽x-4厘米。
(x+x-4)×2=40
(2x-4)×2=40
4x-8=40
4x=48
x=12

宽:12-4=8(厘米)

这个长方形的长12厘米,宽8厘米。

希望对你有帮助

G. 小学数学课本的长宽各是多少

8开纸就是把一整张纸裁成相等的8张,裁开后的每一张的大小就是8开.小学6年级的数学书是32开,也就是一整张纸裁成32张后的大小.32÷8=4,所以一张8开的纸有4个32开的数学书大.

打开数学书,翻开第一张页子,就看到左边页面上的版权页,中间偏下部分有这样一行字:“890毫米×1240毫米 1/32”,这里的“1/32”就表示是一整张纸的三十二分之一,也就是32开.

(7)三年级下册数学长和宽是多少扩展阅读:

一般的书籍在设计大小时, 它是和一大张纸的尺寸:31x43 (78.74公分x109.22公分)有关连的。这张纸对摺一次成为两张(四页), 这叫做对开; 当再度对摺以后, 摺成为四张(八页), 这叫做四开; 当再度对摺以后, 摺成为八张(十六页), 这叫做八开; 当再度对摺以后, 摺成为十六张(三十二页),这叫做十六开; 以此类推等等。这就是书籍尺寸大小的历史由来, 也仍采用此种称呼。

32K精装书

成品尺寸: 184X130mm;

版心尺寸: 153X100mm;

订口对订口:32mm;

翻口对翻口:36mm;

地脚对地脚:30mm;

天头对天头:48mm.

H. 三年级下册数学概念

1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh

和差问题

已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:

(和-差)÷2=较小数

(和+差)÷2=较大数

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?

(24+4)÷2

=28÷2

=14 →乙数

(24-4)÷2

=20÷2

=10 →甲数

答:甲数是10,乙数是14。

差倍问题

已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:

两数差÷倍数差=较小数

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?

分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(吨) →第一堆煤的重量

10+40=50(吨) →第二堆煤的重量

答:第一堆煤有10吨,第二堆煤有50吨。

还原问题

已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?

分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(吨)

答:这个仓库原来有大米100吨。

置换问题

题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)

=120÷10

=12(张)→10分一张的张数

100-12=88(张)→20分一张的张数

或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

盈亏问题(盈不足问题)

题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

当一次有余数,另一次不足时:

每份数=(余数+不足数)÷两次每份数的差

当两次都有余数时:

总份数=(较大余数-较小数)÷两次每份数的差

当两次都不足时:

总份数=(较大不足数-较小不足数)÷两次每份数的差

例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?

分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:这个班有9人,一共有树苗59棵。

年龄问题

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

(54-12)÷(4-1)

=42÷3

=14(岁)→儿子几年后的年龄

14-12=2(年)→2年后

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

(54-12)÷(7-1)

=42÷6

=7(岁)→儿子几年前的年龄

12-7=5(年)→5年前

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

(148×2+4)÷(3+1)

=300÷4

=75(岁)→父亲的年龄

148-75=73(岁)→母亲的年龄

答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2

=150÷2

=75(岁)

75-2=73(岁)

鸡兔问题

已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 凤凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只数

24-8=16(只)→鸡的只数

答:笼中的兔有8只,鸡有16只

凤凰博客3@8Zp|S5|+U



牛吃草问题(船漏水问题)

若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(头)→可供5头牛吃一天。

150-10×5

=150-50

=100(头)→草地上原有的草可供100头牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

I. 小学三年级数学下册,一块面积为84平方厘米菜地,它的宽为6厂里米,长是多少

因为长方形的面积是长乘以宽,所以就是6×长=84,即长=84÷6=14厘米。

J. 三年级下册数学公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 Ѕ=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh

阅读全文

与三年级下册数学长和宽是多少相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071