Ⅰ 大学的数学专业都学什么啊
主要学习如下课程:
数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
概率和统计:
作为数学的分支,概率学是研究随机事件的一门科学技术,涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。
概率论与数理统计是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。
Ⅱ 海南大学的数学类专业学什么科目
海南大学的数学类专业需要学习的科目有:
数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。
主要实践性教学环节:包括计算机的实际操作,深入一线教学实践。
修业年限:四年
授予学位:理学学士学位
毕业生应获得以下几方面的知识和能力:
1、具有良好的、稳定的思想品德、社会公德、职业道德,能为人师表。
2、有扎实的数学基础,初步地掌握数学科学的基础理论和基本思想方法。
3、有良好的使用计算机的能力。
4、具有良好的教师职业素养和从事数学教学的基本能力,熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论,有较强的语言表达能力和班级管理能力。
5、掌握强身健体的科学方法,养成良好的体育锻炼和卫生习惯,达到国家规定的关于大学生身体素质、心理素质和审美能力的要求。
(2)数学系有什么科目扩展阅读:
数学专业细分的5大方向:
1、计算数学
计算数学涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。
2、基础数学
基础数学又叫纯粹数学,即按照数学内部的需要,或未来可能的应用,对数学结构本身的内在规律进行研究,而并不要求同解决其他学科的实际问题有直接的联系,只是以纯粹形式研究事物的数量关系和空间形式。
基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法。微分几何、数学物理、偏微分方程等都属于基础数学范畴。
3、应用数学
应用数学包括两个部分,一部分就是与应用有关的数学,另外一部分是数学的应用,即以数学为工具,探讨解决科学、工程学和社会学方面的问题。
应用数学主要是应用于两个领域,一是计算机,需要一大批懂数学的软件工程师做相应的数据库的开发;二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。
4、概率和统计
作为数学的分支,概率学是涉及工程、生物学、化学、遗传学、博弈论、经济学等多方面的应用,几乎遍及所有的科学技术领域,可以说是各种预测的基石。统计学是关于收集、整理、分析和解释统计数据的科学,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策提供依据和参考。
5、数学教学
数学教学,该专业是为培养我国学校老师而制定的专业。目的是学习一些理论的数学知识,为后期能进入学校进行相关的教学而服务。
Ⅲ 问一下数学系要学哪些科目
数学与应用数学专业
数学分析、高等代数、解析几何、常微分方程、复变函数、微分几何、抽象代数、实变函数、拓扑学、普通物理、概率统计、数学建模、离散数学、C语言、运筹与网络化及软件、数据库、常用统计方法及软件、计算方法及软件、微分流形、泛函分析、代数选讲、李代数及其表示、常微续论、复变函数选论、动力系统引论、数理方程、微分几何续论、生物数学、环境数学模型、数理经济学、金融数学、数学教育概论、数学教学测量与评估、数学教育心理学、数学哲学与数学史、现代数学系列讲座。
Ⅳ 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数
Ⅳ 大学数学专业有哪些数学课程
精通学堂秋季大学数学网课(74.8G超清视频)网络网盘
链接:
若资源有问题欢迎追问~
Ⅵ 数学与应用数学专业的主要课程有哪些
我是吉大数学专业的一名同学,学数学学到头秃的那种,接下来给大家介绍一下数学与应用数学的课程。
主干课程有数学分析、高等代数、空间解析几何、实变函数、复变函数、常微分方程、数学物理方程、泛函分析、微分几何、拓扑学、抽象代数。
数学分析、高等代数、空间解析几何这三门课程是在大一上的,是最基础的三门课程,是其他课程的根基,直接点说,就是这三门学不明白,接下来的其他课程将更加学不懂。其中数学分析内容较多,也较为重要,初学可能较为困难,多用些功夫,就会渐入佳境了。下图即为我们院所用的数学分析的教材,也是我们学院老师编着的。
因为我现在是大二下学期,所以对后面的课程还不是特别了解,就不一一为大家介绍了。
最后,我想说,数学各个课程之间关联非常强,大家想学好数学,基础一定要打牢。
Ⅶ 考研想考数学系,应该考哪些科目
统考科目,政治和英语
学硕三年,考英语一。专硕两年,一般考英语二,对于某些学校,也有考英语一的情况。英语一的难度大于英语二
两门专业课,根据所报考的学校,不同学校有不同要求
登录相应报考院校,查看具体考试科目,参考书目及考试大纲
Ⅷ 数学与应用数学专业日常开设哪些课程
我本人虽然不是数学专业的,但我有一个好哥们是数学专业的,平时常在一起玩。所以对他们专业学的内容还算比较了解。
大三、大四就进入到专业课的学习了。数学专业会有《偏微分方程》、《泛函分析》、《拓扑学》、《小波分析》、《模糊数学》等课程。我自己作为非数学类专业,到了研究生时才会学习《泛函分析》和《小波分析》,当然,是选修课。
以上就是我从我哥们处了解到的一些数学专业学习的课程内容,肯定不全面,欢迎大家补充。
Ⅸ 数学系考研考哪几个科目,分值分别是多少
数学专业考研,一般考两个科目,分别为:《数学分析》,《高等代数》。分值均为150分! 另外就有两个公共课,英语和政治,分值均为:100分。
全国硕士研究生统一招生考试(Unified National Graate Entrance Examination,简称“考研”或“统考”)是指教育主管部门和招生机构为选拔研究生而组织的相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。是一项选拔性考试,所录取学历类型为普通高等教育。
分类:
普通高等教育统招硕士研究生招生按学位类型分为学术型硕士和专业型硕士研究生两种;按学习形式分为全日制研究生、非全日制研究生两种,均采用相同考试科目和同等分数线选拔录取。
Ⅹ 介绍一下数学系的主要学习科目
数学系专业必修课程,主要包括:高等代数,数学分析,常微分方程,复变函数,解析几学,拓扑学,实变函数,概率,数理统计等,这些课程主要是大一大二修,,学校不同,开设的略有不同。
师范类还设中学数学教学法,教育学、心理学;选修的有组合数学,数学软件,小波分析,微分流形,偏微分方程,数学史等
希望帮到你