导航:首页 > 数字科学 > 如何在数学上应用分析法

如何在数学上应用分析法

发布时间:2022-07-11 06:19:27

A. 如何学好小学数学如何应用分析发解题

解答应用题一直是许多孩子做数学题的“心头大患”,因为它既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识
数量关系分析法

数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。数量关系分析法分为三步:

(一)寻找题中的数量。

(二)明确各数量间的关系。

(三)解决各个产生的问题。下面以一道例题的教学从以下几方面来谈数量关系分析法的运用。

家长在家辅导孩子作业可以参考老师的引导方法教导孩子思考的角度和方法,养成孩子独立思考、快速解答的好习惯:

如题:“学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人,五年级参加比赛的有多少人?”

解题思路:

师:题中有几个数量呢?

生:三个。

师:哪两个数量之间有直接关系呢?

生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。

师:这两个数量间的关系让我们头脑中产生一个什么问题呢?

生:四年级有多少人参加比赛?

师:怎样列式解答这个问题呢?

生:用乘法35 ×3=105(人)。

师:现在又多了一个数量:四年级有105人参加比赛,那么哪两个数量间又存在关系呢?根据他们的关系可以产生一个怎样的问题?

生:三年级有35人参加比赛,四年级有105人参加比赛。

问题是:三四年级参加比赛一共有多少人?

师:所以第二步算式怎样列呢?

生:105+35=140(人)。

师:根据现在已经产生的数量,又有哪两个数量间的关系存在呢?

生:三、四年级参加比赛一共有多140人,五年级参加的人数比三、四年级参加的总人数多12人。

师:这两个数量间的关系能帮助我们解决什么问题呢?

生:五年级参加比赛的有多少人?

师:那么解决最后问题的算式怎样列出呢?

生:140+12=152(人)

问题中心散射倒推法

所谓的“问题中心散射法”就是根据分析法这一思路模式,让孩子从最后的问题出发,不断地逆向推理,层层解决。

即从问题所要求的量开始探究,先要想一下,要知道所求的量,就必须知道的条件是什么,要使这些条件成立,又必须具备另外哪些条件,这样推究下去,直到所需要的条件都是题目中所给的已知条件时,问题就解决了。

还是以上面这一道应用题为例来谈谈吧。

解题思路:

师:这道题的问题是“五年级参加比赛的有多少人?”要想解决这个问题,在题里面寻找那一句关键的信息提示呢?

生:五年级参加的人数比三、四年级参加的总人数多12人。

师:看来,现在要解决三、四年级参加比赛的总人数才是更关键的。那么这个问题能一下子解决吗?

生:不能,因为三年级参加比赛的人数知道了,可四年级参加比赛的人数不知道。

师:那么四年级参加比赛的人数又怎么求呢?根据题中的什么数学信息呢?

生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。列式是35 ×3=105(人)。

师:根据我们刚才的分析,接下来第二步求什么/怎样列式?

生:三、四年级参加比赛的总人数是多少?105+35=140(人)。

师:接下来呢?

生:五年级参加的人数是多少?140+12=152(人)

线段图示助解分析法

运用图示法解析应用题,是培养孩子思维能力的有效方法之一。图示法不仅可以形象地、直观地反映应用题的数量关系,启发孩子的解题思路,帮助孩子找到解题的途径,而且通过画图的训练,可以调动孩子思维的积极性,提高孩子分析问题和解决问题的能力。

在解答应用题时,可以先把应用题中的已知条件和所求的问题用图表示出来,然后通过图去寻找解答应用题的方法。

除此之外还可以采用许多方法。如列表法、比较法、方程法等,注重教给孩子学习的方法,使孩子能逐步独立地分析和解决问题。我们帮助孩子形成正确的思维规律,掌握了正确的思维方法,做到举一反三,切实提高解答应用题的能力。

如下四种具体应用题题型详解:

1.一般应用题

一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入手?

从条件入手分析时,要随时注意题目的问题

从问题入手分析时,要随时注意题目的已知条件。

例题如下:

某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成?

思路分析:

已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

2.典型应用题

用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

A.求平均数应用题

解答求平均数问题的规律是:总数量÷对应总份数=平均数

注:在这类应用题中,我们要抓住的是对应关系,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题如下:

一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?

思路分析:

要求这天平均每小时碾米约多少千克,需解决以下三个问题:

1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)

B.归一问题

归一问题的题目结构是:

题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律:先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:

6.台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?

思路分析:

先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

3.相遇问题

指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:

1. 相遇时间=相隔距离(两个物体运动时)÷速度和

例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?

2. 相隔距离(两物体运动时)=速度之和×相遇时间

例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20%,求甲乙相距多少千米?

3. 甲速=相隔距离(两个物体运动时)÷相遇时间-乙速

例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?

相遇问题可以有不少变化。

如两个物体从两地相向而行,但不同时出发;

或者其中一个物体中途停顿了一下;

或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。

另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量

4.工程问题

工程问题是研究工作效率、工作时间和工作总量的问题。

题目特点:

工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。

例题如下:

一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?

思路分析:

把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。

已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是还需要几天完成。

B. 如何提高小学二年级上册数学应用题分析

在小学数学教学中,应用题的教学占有重要地位。如何教好这部分知识,下面谈谈我的一些做法和体会。
一、培养学生的审题习惯
细致地审题,弄明白题意,是准确解答应用题的先决条件。因此,在教学中可先让学生根据解题要求找出题中直接条件和间接条件,构建起条件与问题之间的联系,确定数量关系。为了便于分析问题中的已知量与未知量之间的相依关系,审题时可要求学生边读题边思考,用不同的符号划出条件和问题或用线段图把已知条件和所求问题表示出来。
二、教给学生分析应用题常用的推理方法
在解题过程中,学生往往习惯于模仿教师和例题的解答方法,机械地去完成。因此,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。
三、对易混淆的问题进行对比分析
对一些有联系而又容易混淆的应用题可引导学生进行对比分析,
四、要引导学生自编应用题
让学生了解应用题的结构,重视自编应用题的教学,是提高解题能力的重要环节。在低年级进行简单应用题教学时,就让学生了解一道应用题总题由已知条件和所求问题两部分组成,因此,可进行填空练习。

C. 数学分析方法的应用

在决策时如何运用数学分析法,应视具体情况而定。掌握数量关系是运用数学分析法的前提。如果决策者和有关专家能够把握决策对象的数量关系,运用数学分析法进行预测和决策,就会速度快,效率高,数据准确,结论可靠。
在决策实践中采用哪种数学分析方法,与决策问题的性质和特点有关,其中主要有三个方面的因素:第一,问题本身包含的变量数目;第二,决策环境的不确定程度;第三,时间因素的影响。这三个方面因素的不同,形成了不同类型的决策,需要采用不同数学工具。例如,对于单变量静态确定型决策,一般采用算术、基本代数、微积分中的古典极值原理;对于多变量静态确定型决策,一般采用矩阵代数、线性规划、非线性规划等方法;对于单变量静态概率型决策,应采用概率论基本原理;对于多变量静态概率型决策,应运用多元统计分析;对于单变量动态确定型决策,应采用微分方程;对于多变量动态确定型决策,应采用动态规划、自动控制论;对于单变量动态概率型决策,应采用存货理论、排队论、马尔科夫方程;对于多变量动态概率性决策,应采用复杂的随机过程论;等等。

D. 关于分析法在中学数学中的应用

【题名】:数学推理中的分析法中学数学杂志:初中版论文(:ChuZhongBanLunWen)
【关键词】:数学推理 分析法 数学教学 综合法 追溯型分析法 构造型分析法 中学
【keywords】:ShuXueTuiLi FenXiFa ShuXueJiaoXue ZongHeFa ZhuiSuXingFenXiFa GouZaoXingFenXiFa ZhongXue
【作者】:于江涛,李树臣, 【来源】: 知识词典
【期刊名称】:中学数学杂志:初中版(ZhongXueShuXueZaZhi:ChuZhongBan)
【国际标准刊号】:1002-2775 【国内统一刊号】:37-1116
【作者单位】:[1]沂南大庄中学 [2]沂南第四中学276300([1]YiNanDaZhuangZhongXue [2]YiNanDiSiZhongXue276300)
【分类号】:G633.6 【页码】:-8-10 【出版年】:2000.5

【题名】:数学推理中的分析法山东教育论文()
【关键词】:数学推理 数学学习 分析法 学生 证明 题目 途径 知道 逻辑关系 书写
【keywords】:ShuXueTuiLi ShuXueXueXi FenXiFa XueSheng ZhengMing TiMu TuJing ZhiDao LuoJiGuanXi ShuXie
【作者】:李树臣 【来源】: 知识词典
【期刊名称】:山东教育(ShanDongJiaoYu)
【国际标准刊号】:1004-0897 【国内统一刊号】:37-1025
【作者单位】:沂南四中(YiNanSiZhong)
【分类号】:G633 【页码】:-41-42 【出版年】:2001.8
在数学学习中,学生都想知道,碰到一道稍微复杂的题目(特别是儿何题目),应如何着手思考,如何在较短的时间内找到一种正确的解(证)题途径,并完整地按照一定的逻辑关系将解(证明)的过程书写出来。为此,我们在本文介绍一种经常用到的逻辑方法,这就是分析与综合。

【题名】:数学推理的本质和功能及其能力培养数学教育学报论文()
【关键词】:数学推理 本质 功能 培养 演绎推理 合情推理 实践性推理 思维功能 理解功能
【keywords】:ShuXueTuiLi BenZhi GongNeng PeiYang YanYiTuiLi HeQingTuiLi ShiJianXingTuiLi SiWeiGongNeng LiJieGongNeng
【作者】:宁连华 【来源】: 知识词典
【期刊名称】:数学教育学报(ShuXueJiaoYuXueBao)
【国际标准刊号】:1004-9894 【国内统一刊号】:12-1194
【作者单位】:南京师范大学数学与计算机科学学院,江苏南京210097(,JiangSuNanJing210097)
【分类号】:G427 O1-0 【页码】:-42-45 【出版年】:2003.3
数学推理包括演绎推理、合情推理及实践性推理等,但其本质在于演绎推理.思维功能和理解功能是数学推理的2个主要功能.在早期数学教育中,对推理能力尤其是演绎推理能力的培养至关重要.数学课程设置及教学实施要创造推理的环境和机会,使数学课堂形成良好的推理风气。

E. 如何巧借图表分析解决小学数学应用题

小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件,第二部分是所求问题。应用题的条件和问题,组成了应用题的结构。解答应用题的关键在于理解数量关系,数量关系可以用图表来表达,通过让学生画图表,再加以分析数量间的关系,使问题迎刃而解。
一、对图表分析法重要性的认识是前提
数学应用题对于正处于由形象思维向抽象思维过渡的小学生来说,由于文字叙述比较抽象,数量关系比较复杂,因此理解起来困难较大。如果不掌握一种直观而又科学的分析方法,不断开拓解题的思路和提高解题的能力,长此以往将极大地挫伤学生学习的积极性。为此,图表法作为一种切实可行的数学思维方法,可以帮助学生轻松、愉快的学会解决复杂关系的应用题,不但可以培养学生的理解能力,提高思维能力,还可调动学生解答应用题的积极性和主动性。
(一)借助于图表法解题,可以化抽象为具体
小学生年龄小,认知能力、知识构架和理解能力的局限性,一定程度上影响学生对题目已知条件和未知问题的理解。教师引导学生用图表的形式表示题目中的数量关系,更符合小学生的认知规律,使深奥的数学问题变得直观、形象、具体。
(二)借助于图表法解题,可以化繁为简
行程问题、工程问题涉及数量多、数量关系比较复杂,往往让学生难以理清彼此间的关系,借助图表中的线段表示法可以准确地找出数量间的一一对应关系,从而理清头绪,比较容易地解出要求的问题。
(三)借助于图表法解题,可以化知识为能力
运用图表法解应用题的前提是学会阅读题目,通过阅读弄清已知条件和未知条件之间的关系,久而久之可以培养学生的理解能力和逻辑思维能力。同时在画图过程中还可以激发学生的灵感,变抽象为具体,提高学生的联想能力。
二、对数学中数量关系的准确分析是关键
数量关系是指应用题中已知数量和未知数量之间的关系,只有搞清数量关系,才能根据四则运算的意义恰当的选择算法,把数学问题转化为数学式子,通过计算进行解答。数量关系分析法分为三步:第一步是寻找题中的数量;第二步是明确各数量间的关系;第三步是解决各个产生的问题。下面以一道例题的教学从以下几方面来谈数量关系分析法的运用。
如:“学校举行书法大赛,三年级有35人参加比赛,四年级参加的人数是三年级3倍,五年级参加的人数比三、四年级参加的总人数多12人。五年级参加比赛的有多少人?”师:题中有几个数量呢?生:三个。师:哪两个数量之间有直接关系呢?生:三年级有35人参加比赛,四年级参加的人数是三年级3倍。师:这两个数量间的关系让我们头脑中产生一个什么问题呢?生:四年级有多少人参加比赛?师:怎样列式解答这个问题呢?生:用乘法35 ×3=105(人)。师:现在又多了一个数量:四年级有105人参加比赛,那么哪两个数量间又存在关系呢?根据他们的关系可以产生一个怎样的问题?生:三年级有35人参加比赛,四年级有105人参加比赛。问题是:三四年级参加比赛一共有多少人?师:所以第二步算式怎样列呢?生:105+35=140(人)。师:根据现在已经产生的数量,又有哪两个数量间的关系存在呢?生:三、四年级参加比赛一共有多140人,五年级参加的人数比三、四年级参加的总人数多12人。师:这两个数量间的关系能帮助我们解决什么问题呢?生:五年级参加比赛的有多少人?师:那么解决最后问题的算式怎样列出呢?生:140+12=152(人)
三、培养学生具有熟练的图表能力是基础
图表法因其直观性与实用性,在解决数学应用题方面具有很大的优势,但对于小学生,尤其是低年级学生而言,如何将抽象的语言文字转换成具体直观的画面,完成从文字到图表的抽象过程将是一件很困难的事,这就需要教师从学生接触应用题开始,就进行相关方面的训练,循序渐进地提高审题的能力和画图的水平。一般来讲,可通过 个方面的科学训练,以达到准确熟练地实现从文本文字转换成图画符合。
(一)教师要躬亲示范做好榜样
要求教师在解题中形成运用图表法的习惯,从最基本的“1”开始,比如1个苹果可以用圆圈来表示,一个人可以用一竖横来表示,一段路程可以一横来表示,手把手来教会学生葫芦画瓢,仿照一步一步来画, 找准数量关系,切不可急于求成。
(二)教师要因材施教做好指导
随着学生对“1”这个概念的理解,学生可以由此推及到大的数量,比如20米长如果真用20米画那困难大了,教师可指导学生用1厘米或者是3厘米、4厘米来表示长度,其中的1份代表多少厘米,几分之几是多少的问题通过画图可以清晰地表示出来。在具体过程中要将读题、口述、画图有机结合起来,实现数量关系与图画的有机统一。
(三)教师要适时放手做好点拨
待学生掌握了一定的技能后, 教师可以放手让学生自己去画, 可以按照教师平时说的去表示,也可创造性地根据自己的理解、喜好去画,只要科学、合理、直观地反映数量关系即可,而且要遵循简洁明了的原则,教师可给以适时的点拨,不断培养学生的使用图表解决问题的主动性、自觉性,同时也可让学生分组合作交流,评选出最优方案,不断提高学生的图表解析问题的能力。
实践证明, 图表法具有直观性、形象性、实用性的优点,完全符合小学中低段学生以具体形象思维为主的年龄特点。如果学生从小掌握了借助图表辅助解题的方法, 分析问题和解决问题的能力将会有大大的提高, 对今后的学习生活将有很大的帮助。

F. 极限分析法在数学中有什么应用

关于概念你可以上网查查。对于极限分析法,对于处理实际问题有很大地帮助,比如解决不规则物体的质量,体积,还有一些其它问题。

G. 关于数学分析的学习方法

这样没有问题,一开始觉得可能比较慢,但基础扎实。还有,要注意学习的节奏,不能在某些问题上干耗。实在搞不明白,可以放着,以后学习深了,再来研究,说不定就会有意外收获。有问题时可以找志同道合的一起研究,也是一大乐事。

H. 常用的数学分析方法有哪些

1.避免“一步到位”
是指解题过程中,省略关键步骤,而直接得到答案,这样扣分是严重的.由于解答题是严格按照步骤给分的,如果解题过程中失去关键步骤,跳过拟考查的知识点、能力点,就意味着失去得分点,自然被扣分.
例1(2000年全国高考题) 已知函数y= cos2x+ sinxcosx+1,x∈R.
(I) 当函数y取得最大值时,求自变量x的集合;
(II) 该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?
解:(I)由题设可得,y= sin(2x+ )+ ,故有
当 x= +k ,k∈Z,函数y取得最大值.
(II) 略.
评注:在(Ⅰ)的解答中犯了“大题小作”中的“一步到位”错误,缺少了化简过程的3个要点与何时取到最大值的1个要点,因而被扣分.
2. 避免“使用升华结论”
在解选择和填空题中,使用升华结论(教材中未给出的正确结论)是允许的,而且还是一种简捷快速的答题技巧.而直接运用(不加说明或证明)在解答题中是不合适的,且是“大题小作”,要适当扣分的.
解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,而学生使用“升华结论”则达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外别的东西,以免被扣分.
例2⑴(1991年全国高考题) 根据函数单调性的定义,证明函数f (x)=-x3+1在(-∞,+∞)上是减函数.
⑵(2001年全国高考题) 设抛物线y2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
评分标准中指出:
对于⑴:“利用y=x3在[0,+∞)上是增函数的性质,未证明y=x3在(-∞,+∞)上也是增函数而直接写出f(x1)-f(x2)= - <0,未能证明为什么 - <0过程,由评分标准知最多得3分.
对于⑵:有些考生证明时,直接运用课本中的引申结论“y1 y2=p2”而跳过拟考查的知识点、能力点而被扣2分.
对于课本习题、例题的结论,是要通过证明才能直接使用(黑体字结论例外),否则将被“定性”为解题不完整而被扣分.又如1996年高考理科第22(Ⅱ)及2001年全国高考理科第17(Ⅱ)利用面积射影定理,由于不加证明而直接使用,因而被扣分.
3 避免“答非所问”
是指没有根据题意要求或没有看清题意要求,用其它方法或结论作答,这明显也要被扣分的.
例3(1993年全国高考题)已知数列
Sn为其前n项和.计算得 观察上述结果,推测出计算Sn的公式,并用数学归纳法加以证明.
解:依据题意,推测出Sn的公式为:
Sn= .
∵ ak= = - ,
分别取k=1,2,3,…,n,并将n个式子相加得:
Sn=1- = .
评注 以上解法可谓“简单、明了”,但证明时不用数学归纳法,为“答非所问”,不合题意,扣分是必然的. 又如1999年高考第22题(应用题),第(Ⅰ)问中求“冷轧机至少需要安装多少对轧辊”,要求是用整数作答,不少考生未能用整数作答,违背题意而被扣分.
(四)了解“评分标准”,把握得分点
掌握解答题的“得分点”就要了解高考的评分标准,解答题评分标准是分步给分,但并非写得越多得分越高,而是踏上得分点就给分,即按所用的数学知识,数学思想方法要点式给分,允许“等价答案”,允许“跳步得分”. 因此解答时,应步骤清,要点明,格式齐. 对于不同题型的给分规律有:
1.立几题得分点
通常分作证,计算两部分给分,各段中间又按要点给分.证明主要写清两点:①空间位置关系的判断推理的依据(课本中的定理、公理);②什么是空间角和距离及理由(紧扣定义). 特别要注意没有写清角、距离要被扣分. 计算过程的书写:计算一般是解三角形,要写清三角形的条件及解出的结果. 用等积法解题,要找出等积关系并计算. 都是分段得分的,如1998年23题,1999年22题,都有3个小题,每小题4分,其中作证2分,计算2分.
2.分类讨论题得分点
按所分类分别给分,加上归纳的格式(即写为“综上:当××时,结论是××”)分. 如1996年第20题,按a>1和0<a<1两类分别给5分,归纳给1分. 2000年理19(Ⅱ),求 a 的取值范围,使函数在区间[0,+∞)上是单调函数,按 a≥1和0<a<1讨论各得2分.
3.应用题得分点
按设列、解答两部分给分. 特别要注意不答和答错都要扣1分,应注意设、列、解、答的完整性,争取步骤阶段分.
4.推理证明题得分点
按推理格式,推理变形步骤给分. 对于用定义证明函数的单调性、奇偶性,用数学归纳法证题,都有严格的格式分,应完整,避免失分. 即使推理证明不出,宁可跳步作答,也要套用格式. 从条件、结论两头往中间靠,这样写完格式,这样可以少扣分.
5.综合题得分点
按解答的过程,分步给分,每个步骤又按要点给分. 尽可能把过程分步写出,尽量不跳步,根据题意
列出关系,译出题设中每一个条件,能演算几步算几步,尚未成功不等于失败,特别是那些解题层次分明的题目,那些已经程序化的方法,每进行一步得分点的演算都可以得到这一步的满分,最后结论虽然没有算出来,但分数已过半,所以说,“大题拿小分”也是一个好主意. 因此尽量增加分步得分机会,千万别轻易留空白题.
(五)常用的解答题解题技巧
1.较简单的解答题的求解
对于比较容易解答的解答题(一般是前面3道),宜采用一慢一快的方法,就是审题要慢,解题要快,速战速决,为后面3道解答题留下时间.
找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,罗唆重复,用阅卷老师的话,就是写出“得分点”,一般来讲,一个原理写一步就可以了。至于不是题目直接考查的过渡知识,可以直接写出结论,高考允许合理省略非关键步骤,应详略得当。
例2004北京理科第15题
在 中, , , ,求 的值和 的面积.
分析:本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力
解:
又 ,

.

2.较难的解答题的求解
对于较难的解答题(后面3道)来说,要想在有限的时间内做全对是不大现实的.当然也不能全部放弃,应该尽可能的争取多拿分.对于绝大多数考生来说,在这里重要的是:如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略,下面谈四个观点。
(1)、缺步解答
如果我们遇到一个很困难的问题,确实啃不动,一个明智的策略是:将它分解成为一个系列的步骤,或者是一个个子问题,能演算几步就演算几步,尚未成功不等于彻底失败,每进行一步得分点的演算就可以得到这一步的满分,最后结论虽然没有得出来,但分数却已过半。因为近几年高考解答题的特点是:入口易完善难,不可轻易放弃任何一题。
例: (2004浙江理科第21题)已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双曲线的右支上,支M(m,0)到直线AP的距离为1.
(Ⅰ)若直线AP的斜率为k,且 ,求实数m的取值范围;
(Ⅱ)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程.
解: (Ⅰ)由条件得直线AP的方程

因为点M到直线AP的距离为1,
∵ 即 .
∵ ∴
解得 +1≤m≤3或--1≤m≤1-- .
∴m的取值范围是
(Ⅱ)可设双曲线方程为 由
得 .
又因为M是ΔAPQ的内心,M到AP的距离为1,所以∠MAP=45º,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1.因此, (不妨设P在第一象限)
直线PQ方程为 .
直线AP的方程y=x-1,
∴解得P的坐标是(2+ ,1+ ),将P点坐标代入 得,

所以所求双曲线方程为

(2)、跳步解答
解题卡在某一过渡环节上是常见的,这时,我们可以先承认中间结论,往后推,看能否得到结论。如果得不出,证明这个途径不对,立即改变方向;如果能得出预期结论,我们再回过头来,集中力量攻克这个“中途点”。由于高考时间的限制,“中途点”的攻克来不及了,那么可以把前面的写下来,再写上“证明某步之后,继而有……”一定做到底。也许,后来中间步骤又想出来了,这时不要乱七八糟地补上去,可补在后面,可书写为“事实上,某步可证如下”。
有的题目可能设有多问,第一问求不出来,可以把第一问当成已知,先做第二问,这也算做是跳步解答。
例: (2004天津文科第18题) 从4名男生和2名女生中任选3人参加演讲比赛.
(I) 求所选3人都是男生的概率;
(II)求所选3人中恰有1名女生的概率;
(III)求所选3人中至少有1名女生的概率.
解: (I) 所选3人都是男生的概率为
(II)所选3人中恰有1名女生的概率为
(III)所选3人中至少有1名女生的概率为
这3道小题可以说是互相独立的,彼此不相干.所以如果第1小题做不来,可以跳过去,直接做第2小题.

(3)、退步解答
“以退求进”是一个重要的解题策略,如果你不能解决题中所提出的问题,那么,你可以从一般退到特殊,从复杂退到简单,从整体退到局部。总之,退到一个你能够解决的问题,比如,{an}是公比为q的等比数列,Sn为{an}的前n项和,若Sn成等差数列,求公比q=____.
对等比数列问题,我们需考虑到q=1,q≠1两种情况,你可以先对特殊的q=1进行讨论,满足题意,找到解题思路和情绪上的稳定后,再讨论q≠1时是否也满足题意,发现无解,如果对q≠ 1的情况你确实不会解,你还可以开门见山的写上:本题分两种情况:q=1或q≠1.
也许你只能完成一种情况,但你没有用一种情况来代替主体。在概念上、逻辑上是清楚的。另外“难的不会做简单的”还为寻找正确的、一般的解题方法提供了有意义的启发。
4、辅助解答
一道题目的完整解答,即要有主要的实质性的步骤,也要有次要的辅助性的步骤,如:准确的作图,把题目中的条件翻译成数学表达式,设应用题中的未知量,函数中变量的取值范围,轨迹题中的动点坐标,数学归纳法证明时,第一步n的取值等,如果处理得当,也会增分,不要小视它们。
另外,书写也是辅助解答,卷面随意涂改及正确答案的位置不合理,都会造成不必要的失分。
所以,有人说,书写工整,卷面整齐也得分,不无道理。

I. 在小学数学中如何教给学生准确分析应用题的方法

在小学数学的学习中,应用题的占的比率很大。而在现实生活中,我们也可以利用所学到的应用题来解决实际的问题。例如,费用的支出和收入、盈亏问题,行程问题,工程问题等等。因此,可以说应用题是生活的需要,无所不有,无处不在。其实应用题的学习是对小学生进行思维训练,培养小学生的数学逻辑思维能力,提高其数学素质。因此,应用题教学是小学数学教学中的一个重点。以下是我的几点看法:
一、引导学生怎样解应用题
1、认真阅读题目。很多学生一直认为只有语文才需要一遍遍地读。数学是一门很省力的科目,不需要怎么花时间读题的。其实这是个很大的误区。数学是一门综合性非常强的科目,对语言的理解能力要求相当高。同时读题也是解决应用题的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事。但数学应用题的读不是泛泛而读,要求的是读通、读透。很多学生之所以做错,其中最主要原因之一就是由于读题时走马观花,完全没有看懂题目问了什么,很随意的就开始动笔,这样的结果往往是做错了题目,甚至有的题目错的非常的离谱,让老师无法理解你是如何做出来的。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生认真读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。认真的读题,不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。
2、圈重点。在做应用题的时候一定要把重点的词圈下来。这里所谓的重点词并不是指同一个词语,因为每个学生的理解能力不同,所以在他们眼中重点的词也是完全不一样的,有多有少,但不管怎么,圈出的词一定要为你做题服务。例如:在教《分数加减法》时,经常会遇到这样的题目,一块地共多少公顷,其中多少种大豆,多少种棉花,其余种玉米,玉米的种植面积占这块地的几分之几?
这道题主要是让你区别给你的分数是分率还是一个数。这个时候我就要求学生必须把有单位名称的数字圈出来,这样可以提醒自己,数和分率是不同的,不可以进行加减法。同时划出“几分之几”明白的告诉学生求的是一个分率,和公顷无关。划是一个很好的习惯,可以提醒学生在今后的思考中注意一些细小的地方,以免出现不该有的错误。
二、培养学生的想象能力。
在应用题教学中,必须采用“联想法”引导学生进行推理、想象。可让学生找出题中关键词来引发联想,由题中的一个词语或数量想到与之有关的另一个词语或数量,以弄清题中的数量关系。如:五年级同学要浇300棵树,已经浇了180棵,剩下的分3次浇完,平均每次要浇多少棵?题中出现“要浇、已浇、剩下、3次、平均每次”等字眼,教学时可提示,引导学生进行推理想象,展开一个由“要浇”、“已浇”想到“剩下”,由“剩下”、“分3次”想到“平均每次”的合理想象过程。又如:一块长方形的萝卜地,长15米,宽6米。在这块地里一共收萝卜1350千克,平均每平方米收萝卜多少千克? 解题时只要学生能从“长、宽”想到“周长”或“面积”,或由“平方米”想到“面积”(平方米是常用的面积单位),就能确定必须先求面积了。这样,问题不就迎刃而解了吗?
三、让学生分析应用题常用的推理方法
教学过程中,教给学生分析应用题的推理方法,帮助学生明确解题思路至关重要。分析法和综合法是常用的分析方法。所谓分析法,就是从应用题中欲求的问题出发进行分析,首先考虑,为了解题需要哪些条件,而这些条件哪些是已知的,哪些是未知的,直到未知条件都能在题目中找到为止。例如:甲车一次运煤300千克,乙车比甲车多运50千克,两车一次共运煤多少千克?
指导学生口述,要求两车一次共运煤多少千克?根据题意必须知道哪两个条件(甲车运的和乙车运的)?题中列出的条件哪个是已知的(甲车运的),哪个是未知的(乙车运的),应先求什么(乙车运的300+50=350)?然后再求什么(两车一共用煤多少千克,300+350=650)?
综合法是从应用题的已知条件出发,通过分析推导出题中要求的问题。如上例,引导学生这样想:知道甲车运煤300千克,乙车比甲车多用50千克,可以求出乙车运煤重量(300+50=350),有了这个条件就能求出两车一共运煤多少千克?(300+350=650)。通过上面题的两种解法可以看出,不论是用分析法还是用综合法,都要把应用题的已知条件和所求问题结合起来考虑,所求问题是思考方向,已知条件是解题的依据。
四、培养学生多练习的习惯
多练即对学生进行多种形式的解应用题的训练。练习中,教师要注意照顾全体,辅差培优,这样既可稳定尖子生,又可提高中差等生。练习可分为课堂练习和课外练习。设计练习题时应恰当运用口答、板演、书面练习和动手操作等多种练习相结合的形式,注意“质”与“量”的有机统一,发挥每种练习的独特作用,调动全体学生的积极性,培养学生的创新意识和实践能力,从而达到开发学生智力,使练习收到实效。比如:既要设计一些选择、改编、补充条件或问题等基本形式的练习,又要适当设计一些开放性练习。如答案不唯一,一题多变、一题多解、多余条件、条件不够等。让他们在点点滴滴的进步中感受“成功”的喜悦,产生学习的成就感和自豪感,让他们感受到学习数学的轻松与快乐。
五、引导学生学会“假设”
假设是指将题中的某一条件先假设为与其相近的另一条件,从而使问题的解答趋于简单、明朗。如练习题:“一批煤,原计划每天烧16吨,实际每天烧12吨,结果多烧5天。原计划这批煤可以烧多少天?”假设实际烧煤的时间与原计划烧煤的时间相同,则实际烧煤的总吨数要比原计划烧煤的总吨数少12×5=60(吨)。总吨数差60吨的原因是什么呢?因为实际比原计划每天少烧16-12=4(吨),60吨里包含几个4吨,就是原计划烧煤的时间。根据实际少烧的吨数和实际少烧的时间,就能求出总吨数。
12×5÷(16-12)=15(天)
六、让数学与生活相结合
我们应从课堂教学入手,联系生活实际讲数学,把孩子的生活经验数学化,把数学问题生活化。如教学图画应用题时,可以编一道这样的文字应用题:过春节了,爸爸买了一篮子又红又大的苹果共10个,给姥姥送去4个,还剩几个?这样似乎累赘,但很明显学生感觉到四个苹果是从篮子里拿出来的,拿出来即“去掉”,“去掉”就用减法,从10个里去掉4个,则用10减去4得6个。这比让学生说篮子外面和里面共有10个苹果,篮子外有4个,求篮子里有几个苹果,让学生列式计算效果要好得多。又如教学“小明要写9个字,已经写了6个,还要写几个?”这一道应用题时,教师就画9个田字格,在6个格子中写6个字,指着剩下的空田字格问学生“还要写几个”。写一个字就相当于去掉了(手势)一个格(因为这个格子写过了就不能再写了),写6个字去掉了几个格?去掉用什么方法?这样学生就很快地理解了,还要写几个用减法,用总数减去已经写的个数。这样的例子还很多,至于怎样表述更有利于不同的学生理解,就在于教师对学生的了解程度及引导方式了。
总之,教无定法,作为一名数学老师,要从多方面引导学生,教导学生,学生的思路越清析,解题方法也就越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。

J. 什么是层次分析法,在数学建模中该如何运用

层次分析法在经济、科技、文化、军事、环境乃至社会发展等方面的管理决策中都有广泛的应用.常用来解决诸如综合评价、选择决策方案、估计和预测、投入量的分配等问题.

阅读全文

与如何在数学上应用分析法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071