❶ 什么是乘法结合律
乘法结合律是乘法运算的一种,也是众多简便方法之一。
三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。可化简为(ab)c=a(bc)、(a·b)·c=a·(b·c),它可以改变乘法运算当中的运算顺序。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
相关术语
乘法交换律:
它是一种简算定律,在人民教育出版社小学四年级下册数学教材有涉及:在两个数的乘法运算中,在从左往右计算的顺序,两个因数相乘,交换因数的位置,积不变。具体说来就是:两个数相乘,交换因数的位置,它们的积不变。叫做乘法交换律。
用字母表示:axb=bxa (注意,在乘法与数字中,乘号用·表示,例:(axb=bxa或者:a·b=b·a)。
它可以改变乘法运算当中的运算顺序,在日常生活中乘法交换律运用的不是很多。
应用:
(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。
(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。
❷ 乘法结合律公式是什么
乘法结合律公式:(ab)c=a(bc)、(a·b)·c=a·(b·c)。
乘法结合律概念:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
乘法结合律是乘法运算的一种,也是众多简便方法之一。它可以改变乘法运算当中的运算顺序。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法的计算法则
1、首位相同,两尾数和等于10的两位数相乘方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
2、首位相同,尾数和不等于10的两位数相乘方法:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
3、被乘数首尾相同,乘数首尾和是10的两位数相乘方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
4、被乘数首尾和是10,乘数首尾相同的两位数相乘方法:与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
❸ 什么是乘法结合律
乘法结合律是乘法运算的一种,也是众多简便方法之一。三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。可化简为(ab)c=a(bc)、(a·b)·c=a·(b·c),它可以改变乘法运算当中的运算顺序
❹ 乘法分配律乘法交换律乘法结合律是什么
乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律,用字母表示:(a+b)×c=a×c+b×c。
乘法结合律
乘法结合律是乘法运算的一种,也是众多简便方法之一。三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。可化简为(ab)c=a(bc)、(a·b)·c=a·(b·c),它可以改变乘法运算当中的运算顺序 。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法交换律
它是一种简算定律,在人民教育出版社小学四年级下册数学教材有涉及:在两个数的乘法运算中,在从左往右计算的顺序,两个因数相乘,交换因数的位置,积不变。具体说来就是:两个数相乘,交换因数的位置,它们的积不变。叫做乘法交换律。
用字母表示:axb=bxa (注意,在乘法与数字中,乘号用·表示,例:(axb=bxa或者:a·b=b·a)。
它可以改变乘法运算当中的运算顺序,在日常生活中乘法交换律运用的不是很多。
❺ 什么是乘法结合律什么是乘法交换律
乘法结合律是乘法运算的一种,也是众多简便方法之一。
三个数相乘,先把前两个数相乘,再和另外一个数相乘,
或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。
❻ 小学乘法结合律分配律概念是什么
乘法结合律:三个数相乘,先把头两个数相乘再同第三个数相乘,或者先把后两个数相乘在同第一个数相乘,结果不变。 (A*B)*C=A*(B*C)
❼ 什么叫乘法分配律、乘法结合律、乘法交换律谢谢!
例:2X3=3X2 乘法交换律
(2+3)X4=2X4+3X4 乘法分配率
2X4+3X4=4X(2+3) 乘法结合律
什么是乘法交换律?
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。它是一种简算定律,在小学四年级均有涉及。乘法交换律是乘法运算的一种运算定律。主要公式为ab=ba(注意,在乘法与数字中,乘号用·表示,列:a·b=b·a或:ab=ba)。
作用:
它可以改变乘法运算当中的运算顺序,在日常生活中乘法交换律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
应用:
(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。
(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。
运算例题
如: 3×4×5=3×5×4=60
5.5×9×10=5.5×10×9=55×9=495
什么是乘法结合律?
定义:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
运算方法:
主要公式为(a×b)×c=a×(b×c),它可以改变乘法运算当中的运算顺序 .在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法结合律是三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
注意:乘法结合律不适用于向量的计算。例子:
69×125×8
=69×(125×8)
=69×1000
=6900
什么是乘法分配律?
两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
用字母表示:
(a+b)x c=axc+bxc
还有一种表示法:
ax(b+c)=ab+ac
示例
25×404
=25×(400+4)
=25×400+25×4
=10000+100
=10100
乘法分配律的逆运用
25×37+25×3
=25×(37+3)
=25×40
=1000
乘法分配律还可以用在小数、分数的计算上。
例题:
25×1.5+25 ×0.5
=25×(1.5+0.5)
=25×2
=50
❽ 乘法的结合律是什么
乘法结合律是乘法运算的一种,也是众多简便方法之一。
三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。可化简为(ab)c=a(bc)、(a·b)·c=a·(b·c),它可以改变乘法运算当中的运算顺序。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法交换律
它是一种简算定律,在人民教育出版社小学四年级下册数学教材有涉及:在两个数的乘法运算中,在从左往右计算的顺序,两个因数相乘,交换因数的位置,积不变。具体说来就是:两个数相乘,交换因数的位置,它们的积不变。叫做乘法交换律。
用字母表示:axb=bxa (注意,在乘法与数字中,乘号用·表示,例:(axb=bxa或者:a·b=b·a)。它可以改变乘法运算当中的运算顺序,在日常生活中乘法交换律运用的不是很多。
❾ 什么是乘法分配律,结合律,交换律
1、乘法交换律:它是一种简算定律,在人民教育出版社小学四年级下册数学教材有涉及:在两个数的乘法运算中,在从左往右计算的顺序,两个因数相乘,交换因数的位置,积不变。具体说来就是:两个数相乘,交换因数的位置,它们的积不变。叫做乘法交换律。
2、分配律:两个数的和与一个数相乘,等于把这两个加数分别同这个数相乘,再把两个积加起来,使计算更加简便,且结果不变两个数的和与一个数相乘,可以先把他们与这个数分别相乘再相加,这叫做乘法分配律。
3、结合律:乘法结合律是乘法运算的一种,也是众多简便方法之一。三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。叫做乘法结合律。
计算方法
使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
❿ 乘法结合律是什么意思啊
1、乘法结合律是三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
应用:它可以改变乘法运算当中的运算顺序。在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
字母表示:(a×b)×c=a×(b×c)
举例:
69×125×8
=69×(125×8)
=69×1000
=69000
2、两个数相乘,交换因数的位置,它们的积不变。叫做乘法交换律。
应用:因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。其中一个因数由重复的数字组成的,利用交换律计算也有简便。
用字母表示:axb=bxa (注意,在乘法与数字中,乘号用·表示,例:(axb=bxa或者:a·b=b·a)。
举例:
9×10=10×9=90
45×2=2×45=90
1、乘法分配律
两个数的和,乘以一个数,可以拆开来算,积不变。
字母公式:(a+b)×c=a×c+b×c
2、除法性质
除法性质的概念为:一个数连续除以两个数,可以先把后两个数相乘,再相除。
字母公式:a÷b÷c=a÷(b×c)
3、商不变的规律
概念:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变。 分数的基本性质:分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
字母公式:a÷b=(an)÷(bn)=(a÷n)÷(b÷n) (n≠0 b≠0)