导航:首页 > 数字科学 > 数学11质数怎么计算

数学11质数怎么计算

发布时间:2022-07-12 23:48:28

㈠ 如何求质数 最简单的方法

没有什么好的办法,如果用程序,就计算n除以2到根号n最接近的整数,如果都不能整除,n就是质数
比如101,要计算19除以2,3,4,5直到10,如果都不能整除,就是质数.
如果你要手动计算,就挨个写,2,3,5,7,11,13,如果数字足够大,不需要像程序一样挨个除,只需要除以比它小的质数就可以了.

㈡ 质数该怎么求

筷子(11)和医生(13)在天平山上用仪器(17)制造药酒(19)。碰见乔丹(23)和二舅(29)带着山药(31)和山鸡(37),跟随的司仪(41)说,石山(43)脚下有他们带的司机(47),司机头上戴个乌纱(53)帽,帽子上有一个红色的五角星(59),司机还带个儿童(61),他们正在油漆(67)车,车里放着生日(71)快乐歌曲,,车上插着旗杆(73),旗杆上挂着气球(79)。他们爬山(83)时也带了一瓶白酒(89),喝完酒后,他们将一块回香港(97)。转自:高山流水。
质数的基本简介
英语中数词主要分为两种:基数词和序数词。基数词表示数目的多少,序数词则表示顺序。在各地的中考英语试题中,对数词的考查是命题的重点质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。

根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2。

目前为止,人们未找到一个公式可求出所有质数。

2016年1月,发现世界上迄今为止最大的素数,长达2233万位,如果用普通字号将它打印出来长度将超过65公里。

质数个数

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,HillelFurstenberg则用拓扑学加以证明。

对于一定范围内的素数数目的计算

尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。

相关定理

在一个大于1的数a和它2倍之间(即区间(a, 2a]中)必存在至少一个素数。

存在任意长度的素数等差数列。(格林和陶哲轩,2004年)

一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,1920年)

一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)

一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5) (中国,1968年)

一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2) (中国陈景润)

着名猜想

哥德巴赫猜想:是否每个大于2的偶数都可写成两个素数之和?

孪生素数猜想:孪生素数就是差为2的素数对,例如11和13。是否存在无穷多的孪生素数?

斐波那契数列内是否存在无穷多的素数?是否有无穷多个的梅森素数?在n2与(n+1)2之间是否每隔n就有一个素数?是否存在无穷个形式如X2+1素数?

性质介绍

质数具有许多独特的性质:

(1)质数p的约数只有两个:1和p。

(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

(3)质数的个数是无限的。

(4)质数的个数公式π(n)是不减函数。

(5)若n为正整数,在n的2次方到(n+1)的2次方 之间至少有一个质数。

(6)若n为大于或等于2的正整数,在n到n!之间至少有一个质数。

(7)若质数p为不超过n(n大于等于4)的最大质数,则p>n/2 。

首先偶质数2只有一个,其余都是奇数,即个位是1、3、5、7、9。还有个位是5的只有一个5,个位是5两位数都是合数。接下来可以分段记忆。只考虑。#1、#3、#7、#9。

1-10以内:2、3、5、7

11-20内:11、13、17、19

21-30内:23、29

31-40内:31、37

41-50内:41、43、47

51-60内:53、59

61-70内:61、67

71-80内:71、73、79

81-90内:83、89

91-100内:97

共25个

㈢ 11以内的质数相加怎样才能得出11

11以内的质数为2,3,5,7,于是2+2+2+2+3=11,2+2+2+5=11,2+2+7=11,3+3+5=11

㈣ 1到100的质数表

质数表:

分布规律

以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。

S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)

S2区间73——216,有素数27个,孪生素数7对。

S3区间217——432,有素数36个,孪生素数8对。

以上内容参考:网络-质数

㈤ 质数合数怎么计算

质数就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,也叫做素数。

合数就是比1大但不是素数的数,即自然数中除能被1和本数整除外,还能被其他的数整除的数,1和0既非素数也非合数,合数是满足以下任一(等价)条件的正整数:

  1. 是两个大于 1 的整数之乘积;

  2. 2.拥有某大于 1 而小于自身的因数(因子);

  3. 3.拥有至少三个因数(因子);

  4. 4.不是 1 也不是素数(质数);

  5. 5.有至少一个素因子的非素数。

㈥ 质数的公式是什么

质数公式:

尽管整个素数是无穷的,仍然有人会问“100000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。

1、费马数2^(2^n)+1
被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。但是,就是在F5上出了问题!

F5=4294967297=641×6700417,它并非质数,而是一个合数!

2、梅森质数
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1 ,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。

3、算术基本定理
任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1<P_2<...<P_n是质数,其诸方幂 ai 是正整数。
这样的分解称为N 的标准分解式。

参见网络:http://ke..com/link?url=1zDKMiPvKbCWzchU3V_otGTfk4AVsVlvvmyl7cAc6-_u60_

㈦ 五年级下册数学 质数怎么求

判断一个数是不是质数第一步看个位,如果是偶数(0.2.4.6.8)和5一定是合数;第二步用“去九法”判断看是否是3的倍数,如果是3的倍数一定是合数,再记住一些特殊的数:如7的倍数49是合数,11的倍数121,13的倍数169这些的话应该就行了,因为小学五年级让你判断是不是质数一般不会超过这个范围的!因为我刚才教了这一些部分内容的!

㈧ 求个质数的公式

所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子.例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数.从这个观点可将整数分为两种,一种叫质数,一种叫合成数.(有人认为数目字 1 不该称为质数)着名的高斯“唯一分解定理”说,任何一个整数.可以写成一串质数相乘的积.
(例1) ,, , , , ,这就是说,任何数都由质数构成的.
(例2) 2=(1×2),3,5,7,11…均为质数.而4,6,8不为质数.(因为最少还有因数2)
由于质数本身的奇异性使人无法一把抓住它出现的规律,抓住它出现的特性甚至不知道它实际分布的情形.简单来说,给你一个正整数,你竟不可知道它是否是一个质数,即使你用尽了方法,证明它不可能是一个质数,但竟无法分解它,举例来说:211-1=2047 可以分解成 .267-1 呢 据说美国代数学家 Frank Neloon Cole花了三年多才发现的.自然那时“电脑时代”还未来临,只能靠无限的耐心与毅力,再加上一副长于计算数目的训练才弄得出来.但有了电脑似乎好不了多少,数目字加大了,困难依旧.1931年 D.H. Lehmar 证明了 2257-1 是一个大合成数.大!不错.它等于 231,584,178,474,632,390,847,141,970,017,375,815,706,
539,969,331,281,128,078,915,168,015,826,259,279,871
一个78位数字的大数,到目前仍未有人或电脑能分解它!
因此,虽然知道一个数目是否质数也许没有多大用处,但仍是很有趣味,最少在找它的过程中会引起很多方法论的问题.
质数的特性
1质数除了2之外,必为奇数.(换句话说,2是最小的质数,也是唯一的偶数)
2“1”不算是质数.
3“算术基本定理”:比1大的任何整数,必可分解为质因数的乘积,且表示的方法是唯一的.
质数的个数与求法
1欧几里德证明了“质数必有无限个”
2“Eratosthenes”滤套
若要求从2到n的质数,只要检查n是否可被不大于的质数整除即可.要判断313是否为质数,则只要检查313是不是可以被小于或等于17的质数整除即可.
3质数有没有一种特殊的型式呢
Mersenne质数:型如,若为质数时称之(但质数不一定型如,
例如就非质数.)目前已知有3, 7, 31, 127,等38个,还在寻找中…
费玛质数:型如,当n=0到4时.(但质数不一定型如,例
如n=5时,非质数.)
【注】型如称为“费玛数”,而费玛质数只有3 , 5, 17 , 257 , 65537等五个.
4可不可以用一个公式,表示出所有的质数呢
(1)欧拉::在x=0,1,2…40时,可得41个质数
(1)勒真德::在x=0,1,2…28时,可得29个质数
:在x=0,1,2…79时,可得80个质数
:在x=1,2…11000时,可得11000个质数
●但是,没有一个多项式可表示出所有的质数
为什么要找质数
“既然质数有无限多个,那么为什么数学家要投入那么多的心力一直寻找更大的质数呢 ”
简单的说,数学家就和一般人一样,“你有收藏东西的兴趣习惯吗 ”“喜欢在比赛中得到名次吗 ”这个都是理由之一.回答这个问题,可以用几个方向来说明,
一,这是传统!
在西元前300年的欧几里德已经开始这个追求!他在“几何原本”中提及完全数的概念,其中和麦司尼质数产生了关联,开启了研究之门,之后大数学家如费玛,欧拉,麦司尼,笛卡尔…相继投入这个追寻的工作中.也就在寻找大的质数的过程中,对基本数论有很大的助益,因此这个寻找的传统值得被继续~
二,它的附加价值!
因为美国的政治上的目的,才有把人送上月球的创举,但是追寻大的质数例如像麦司尼质数,对社会影响的却是持续不断的,它的副加价值在于不断促进科技的进步与人们的日常生活有用的东西材质的研发,也改进教育建设让生活更有生产力.在寻找并纪录麦司尼质数的过程中,让老师可以带领学生投入研究,这让学生将研究的精神用于工作上,让工程或科学的得以进步,当然这只是副加价的一部份而已.
三,人们喜欢美丽且稀少的物品!
如前文提及欧几里德已经开始这个追求后,它是如此稀少(目前已知有30多个,还在寻找中),不仅如此它也是美丽的;数学上什么叫作“美丽” 例如人们希望证明是简短,明了,而且可以绐合旧知识让你了解新的东西!而麦司尼质数的型式与证明都合符合上述的要求.
四,无上荣耀!
运动选手为什么不断追不更高,更快,更远呢 难道是希望他们在工作上可以使用这些技巧吗 不是吧,它们都是渴望竞争,为了荣耀(to win)!险峻的峭壁和高山峻岭对于喜欢攀岩,登山的人,有无法抗拒的魅力,数学的探索也是如此,看着无法想象巨大的数字竟是质数时那种心情是相同的,因此继续寻找下一个的渴望,岂是语言可以形容
人们当然需要务实,但是也需要好奇心和不断尝试的精神,才能而不断进步.
五,对电脑的考验!
当电脑的发明之后,人们可以借由电脑的计算去找麦司尼质数,因为检验一个已知的质数都要经过十亿次以上的计算才会计算出来(以电脑来算当然很快),这时候就是测验电脑稳不稳定的好时机,Intel的Pentium处理器,就被Thomas Nicely在计算twin prime constant时,找到有bug存在.
六,了解质数分布的情形!
虽然数学不是实验的科学,但是在我们会用例子去检验我们的猜测,当例子愈来愈多时,我们也会更了解事实,而质数的分布情形这是如此,例如高斯在看过质数表之后猜测了质数定理(prime number theorem),这个定理在1896由哈达玛(Hadamard)及普辛(Pouusin)分别证得:
质数是自然数的一部份,有趣的是,它却与自然数的个数一样多,也有无穷多个.两千多年前,古希腊数学家就从理论上证明了这一点.不过,质数看上去要比自然数少的多.有人统计过,在1到1000之间,有168个质数;在1000到2000之间,有135个质数;在2000到3000之间,有127个质数;而在3000到4000之间,就只有120个质数了,越往后,质数就会越稀少.那么,怎样从自然数里把质数给找出来呢 公元前三世纪,古希腊数学家埃拉托塞尼(Eratosthenes)发明了一种很有趣的方法.埃拉托塞尼常把数表写在涂了白腊的木板上,遇到需要划去的数,就在那个数的位置刺一个孔;随着合数逐一被划掉,木板上变得千疮百孔,像是一个神奇的筛子,筛掉了合数,留下了质数.所以,人们将这种求质数的方法叫做"埃拉托塞尼筛法".
1. 我们把1~100的自然数,按照顺序列成一张百数表.(如下表)
2. 首先把1划掉,因为1既不是质数,也不是合数.
3. 接下来一个数是2,它是最小的质数,应予保留.但2的倍数一定不是质数,应该全部划掉;也就是从2起,每隔1个数就划掉1个数.
4. 在剩下的数中,3是第一个未被划掉的数,它是个质数,应予保留.但3的倍数一定不是质数,应该全部划掉;也就是从3起,每隔2个数就划掉1个数.
5. 在剩下的数中,4已被划掉了,其余的数,5成为第一个未被划掉的数,它是质数,也应予以保留.但5的倍数一定不是质数,应该全部划掉;也就是从5起,每隔4个数就划掉1个数.
6.仿照步骤1~5,继续划下去,数表上最后剩下的就是1~100之间的质数了.
埃拉托塞尼筛法
这种方法是世界上最古老的一种求质数的方法,它的原理很简单,运用起来也很方便.现在,凭着经过改进后的埃拉托塞尼筛法,数学家们已把10亿以内的质数全都筛出来了.怎样找质数呢 这个问题据说自希腊及中国周朝已有人在问这个难题了.下面是一些初步查询.
质数是无穷.这很早就证明了.因若 p1=2, p2=3, pn 是最初 n 个质数,则新数目 必由一个不等于 p1, p2, , pn 中任一个质数的新质数所除尽,故而 pn+1 存在了;且
举例说,
但 30031=59 x 509
证明了 ,不必是质数.
考虑
f(n) 形式中是否有无限个质数存在或 f(p) 中是否有无限合成数存在呢
怎样证明 n 是一个质数呢
传统的“筛法”是将任一个数n的可能因子查证,简化后;只要过滤所有小于的质数即可以了.就是n若是合成数,必有一个小于的质因数.如 3,5,7,11,13,等等.目前零碎地查质数的方法固然有,但仍无一万全之方.
费马的猜测
17世纪时,有个法国律师叫费马(Fermat,1601-1665),他非常喜欢数学,常常利用业余时间研究高深的数学问题,结果取得了很大的成就,被人称之为"业余数学家之王".费马研究数学时,不喜欢搞证明,喜欢提问题;他凭藉丰富的想象力和深刻的洞察力,提出一系列重要的数学猜想,深刻地影响了数学的发展,他提出的"费马最后定理",几百年来吸引了无数的数学家,直到1994年才由美国普林斯顿大学的怀尔斯得出证明.
他在西元1640年提出了一个公式:‘ 2+1’,他验算了n等于1到4的情况,发现都是质数以后(如下表),就直接猜测只要n是自然数,这个公式求出来的一定是质数.”
n
2+1
1
2+1=5(质数)
2
2+1=17(质数)
3
2+1=257(质数)
4
2+1=65537(质数)
1. 费马最喜欢的数学分支是数论,他曾深入研究过质数的性质,他发现了一个有趣的现象.计算 = 它是一个质数吗 .
2. 那 又是多少呢 它是一个质数吗 .
3. 再下去, 是多少呢 它是一个质数吗 .
4. 最后, 是多少呢 它是一个质数吗
解答:
=5;它是质数.
=17;它是质数.
=257;它是质数.
=65537;它是质数.
费马当年并没有继续算下去,他猜测说:只要n是自然数,由这个公式 得出的数一定都是质数;这是一个很有名的猜想,由于n=5之后演算起来很麻烦,很少有人去验证它.
1732年,大数学家欧拉认真研究了这个问题,它发现费马只要再往下演算一个自然数,就会发现由这个公式得出的数不全是质数.
n=5时,==4294967297,4294967297可以分解为641×6700417,它不是质数.也就是说,费马的这个猜想不能成为一个求质数的公式.实际上几千年来,数学家们一直在寻找这样的一个公式,一个能求出所有质数的公式;但直到现在,谁也未能找到这样一个公式,而且谁也未能找到证据,说这样的公式就一定不存在;这样的公式存不存在,也就成了一个着名的数学难题.
费马在数学史上,是一位非常重要的人物,虽然费马的公式是错误的,但是数学家从另一个方向来寻找大质数,也就是之前讲完全数时提到的:‘如果2-1是一个质数,那么N=2(2-1)一定是个完全数.’于是,数学家们努力验算不同的 n值,也找出了一些质数,但是由于数字太大,当时又没有电脑的帮忙,所以很多结果都是错的.到了十七世纪,一位法国的天主教修士梅森尼提出了:在 n不大于257的情况下,共有十一个质数.虽然他的结果同样有不少错误,但是后人就把‘2-1’这种形式的质数叫做‘梅森尼质数’.”
费马定理
费马一心想要找出一个求质数的公式,结果未能成功.人们发现,倒是他无意提出的另一个猜想,对寻找质数很有用处.
费马猜测说;如果 是一个质数,那么,对任何自然数n,( )一定能被 整除.这一回费马猜对了,这个猜想被人称作费马小定理.例如:11是质数,2是自然数,所以( )一定能被11整除.
利用费马定理,这是目前最有效的鉴定质数的方法.要判断一个数n是不是质数,首先看它能不能整除( ),如果不能整除,它一定是合数;如果能整除,它就"极可能"是质数.现在,在电子计算机上运用这种新方法,要鉴定一个上百位的数是不是质数,一般只要15秒钟就够了.
质数公式表
f(x)公式
在100以下令f(x)成合成数的x值
总数
x2-79+1601
80, 81, 84, 89, 96
5
x2+x+41
40,41,44,49, 56, 65, 76,81,82,84,87,89,91,96
14
2x2+29
29, 30, 32, 35, 39,44, 50, 57, 58, 61,63, 65,
25
72,74,76, 84,87, 88, 89,91,92,94,95, 97, 99
6x2+6x+31
29, 30, 31, 34, 36,41,44, 51, 55, 59, 61, 62,
25
64,66, 69,76,80, 84, 86. 87, 88, 92, 93, 97, 99
3x2+3x+23
22,23,27, 30, 38,43, 44,45,46,49, 51, 55, 56, 59,
28
62,66,68, 69,70,78, 85, 87, 88, 89, 91,92,95,96
像质数公式 x2+x+41,我们能找到连续 40 个(由 0 到 39)的质数,有没有一条质数公式 f=x2+x+b,能使 (b-1) 个连续 x 值使 f(x) 都是质数呢 有人曾用电算机去找,结果查出如果有,则 b 值一定要超过 1,250,000,000,而且最多只有一个.看来这个问题大概解不了.
现在的数学家们在质数这个领域里,有两个重要的研究方向:一个是利用各种更有效率的筛法,不断地往更大的数里面去搜寻质数;另外就是寻找新的‘梅森尼质数’.到西元1996年为止,数学家已经借由电脑运算,知道1020以内有多少质数了;另一方面,在西元1999年六月,数学家也发现了第三十八个‘梅森尼质数’: 26972593-1,这同时也是到目前为止发现的最大质数!它是一个2098960位数.

㈨ 质数是怎么算出来的

质数是通过因式分解算出来的,质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数的数称为质数。

素数就是质数,即除了1和它本身以外任何数都不能整除他的数

素数可以这样算出来:将你知道的素数全部乘起来再加一。

比如你知道2是质数,3是质数,你可以得到质数2 X 3 + 6 = 7这个质数,你知道2是质数,3是质数,5是质数,可以得到2 x 3 x 5 + 1 = 31 这个质数

拓展资料

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。

关于素数,有一个常为人所知的的着名问题,即哥德巴赫猜想。素数因其特殊性在计算和数理分析中占有重要地位。

㈩ 如何算出一个数的所有质数

1、找到这个数字的平方根m=√m

2、找到不大于m的所有质数。

3、在一张自然数表上划掉所有质数的整数倍(质数本身不划掉)

4、把1划掉。

5、没有划掉的数字就是质数。

例如,我们要找到100以内的所有质数,只需要按照下面的步骤进行:

1、计算100的平方根,是10。

2、10以内的质数有2、3、5、7

3、划掉2、3、5、7的整数倍。首先划掉2的倍数,如4、6、8…、98、100,然后划掉3的倍数,如6、9、12、15、…、99, 重复的就不需要再划掉了。然后划掉5的倍数,7的倍数。

4、最后划掉1。

(10)数学11质数怎么计算扩展阅读

质数与黎曼猜想

我们之前谈到:质数与黎曼猜想之间有着千丝万缕的联系。1896年,法国科学院举行比赛:征稿证明黎曼定理。两位年轻的数学家阿达马和德·拉·瓦莱布桑获得了这一殊荣。

实际上这两位数学家并没有证明黎曼猜想,只是获得了一点进展,但是这一点进展就一举证明了欧拉和勒让德的猜想,把素数猜想变成了素数定理。黎曼猜想的威力可见一斑。

1901年,瑞典数学家科赫证明:如果黎曼猜想被证实,那么素数定理中的误差项c大约是√xln(x)的量级。

即便黎曼猜想被证实,人们也只是在质数规律探索的过程中更近了一步,距离真正破解质数的规律,还有很长的路要走。也许质数就是宇宙留给人类的密码。

阅读全文

与数学11质数怎么计算相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071