Ⅰ “根号二”是什么意思
根号二是一个数字,是一个无理数,表示为√2。√2表示的是对2开算术平方根,约为1.414。几何上2的平方根是横跨正方形的对角线的长度,边长为一个单位;这是从毕达哥拉斯定理得出的。这可能是第一个已知的无理数。
根号是一个数学符号,根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
(1)数学中二根是什么意思是什么扩展阅读
根号二的由来:
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。
Ⅱ 二重根是什么意思
意思:在代数方程的解中出现两次的根。
所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根。
比如说,方程(x-1)^2=0,这个方程可以写成是(x-1)*(x-1)=0,所以x1=x2=1,就把x=1叫做方程的二重根。
代数方程,即由多项式组成的方程。有时也泛指由未知数的代数式所组成的方程,包括整式方程、分式方程和根式方程。
才没有重根
Ⅲ 数学中的“根”是什么意思
根的意思就是方程的解。
方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
(3)数学中二根是什么意思是什么扩展阅读:
增根:
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
无根:
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
不存在根:
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
Ⅳ 数学中的“根”是什么意思呢
数学中的“根”是平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。同时,根也指未知方程两边的解。
1、算术平方根
一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
2、二次方根
若一个数x的平方等于a,即=a,那么这个数x就叫做a的平方根(square root,也叫做二次方根),通俗的说,就是一个数乘以它的本身,等于另一个数,原来的那个数就是乘完的那个数的平方根。
(4)数学中二根是什么意思是什么扩展阅读:
相关的还有:
1、增根
解分式方程、无理方程、对数方程时,需化为整式方程,有时会产生增根——使原方程无意义的未知数取值,此时该值便不是原方程的解。
2、不存在根
对于多元方程,方程的解不能说成是方程的根。这时解与根是有区别的。因为多元方程是不存在根的概念的。
Ⅳ “二重根”是什么意思
意思:在代数方程的解中出现两次的根。
所谓重根就是指方程(当然是指n次(n>=2))根,但是这些根可能有几个是一样的,就把这几个一样的叫做重根,有几个就叫做几重根。
例如f(x)=(x-1)^2则多项式的根是1就是二重根啊。因为f(x)=(x-1)(x-1)。
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
举例:
6×6=36±6就是36的平方根
5×5=25±5就是25的平方根
也就是说√36=±6,√25=±5
随着数学的发展,内在涵义又推广为用群结构或各种结构来代替科学现象中的各种关系。也就是说“代数”本质是个“代”字,通过研究各种抽象结构“代替”直接研究科学现象中的各种关系。
Ⅵ 数学的.什么叫二次根式麻烦了..
二次根式的定义和概念:1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。
II.二次根式√ā的简单性质和几何意义1)a≥0
;
√ā≥0
[
双重非负性
]
2)(√ā)^2=a
(a≥0)[任何一个非负数都可以写成一个数的平方的形式]
3)
√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。
III.二次根式的性质和最简二次根式1)二次根式√ā的化简
a(a≥0)
√ā=|a|={
-a(a<0)
2)积的平方根与商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
3)最简二次根式
条件:
(1)被开方数的因数是整数或字母,因式是整式;
(2)被开方数中不含有可化为平方数或平方式的因数或因式。
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y
等;
含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等
IV.二次根式的乘法和除法1
运算法则
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
二数二次根之积,等于二数之积的二次根。
2
共轭因式
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。
[编辑本段]V.二次根式的加法和减法1
同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2
合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
[编辑本段]Ⅵ.二次根式的混合运算1确定运算顺序
2灵活运用运算定律
3正确使用乘法公式
4大多数分母有理化要及时
5在有些简便运算中也许可以约分,不要盲目有理化
[编辑本段]VII.分母有理化分母有理化有两种方法
I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多项式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
Ⅶ 数学根号怎么算的,根号2是什么意思
根号的意思是算术平方根,比如求根号4,就是找一个数的非负的的平方等于4,我们知道2的平方等于4,所以根号4就等于2
根号2的意思就是2的算术平方根,意思是它的平方会等于2,就是整个根号2的平方会等于4
Ⅷ 数学中两根什么意思
在一元二次方程中,当△大于0的时候就会有两个根,即两个解
Ⅸ 数学中的根是什么意思
所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
(9)数学中二根是什么意思是什么扩展阅读
分类:
1、重根
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。
虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
2、无根
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
3、增根
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
4、不存在根
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。