① 数学建模规划问题
可以分为:按是否线性可分为线性规划和非线性规划,一次是线性的,其他就是非线性的,按是否份过程阶段 分动态规划和非动态规划,按目标函数的多少分,可以分单目标规划和多目标规划 。
线性和非线性的比较常见,我说说其他的吧。
动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(R.Bellman)等人所创立的.1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生.
动态规划从创立到现在五十多年来,无论在工程技术,企业管理还是在工农业生产及军事等部门都有广泛的应用,并获得了显着的效果.在管理方面,动态规划可用于资源分配问题,最短路径问题,库存问题,背包问题,设备更新问题,最优控制问题等等.所以动态规划是现代管理学中进行科学决策不可缺少的工具.
动态规划的优点在于,它把一个多维决策问题转化为若干个一维最优化(optimization)问题,而对一维最优化问题一个一个地去解.这种方法是许多求极值方法所做不到的,它几乎优于所有现存的优化方法.除此之外,动态规划能求出全局极大或极小,这一点也优于其他优化方法.需要指出的是,动态规划是求解最优化问题的一种方法,是解决问题的一种途径,而不是一种新的算法.在前面我们学习了用单纯形解线性规划问题,凡是具有线性规划问题那样统一的数学模型都可以用单纯形法去求解,而动态规划问题的求解却没有统一的方法(类似于单纯形法).因此在用动态规划求解最优化问题中,必须对具体问题具体分析,针对不同的问题,使用动态规划的最优化原理(optimization principle)和方法,建立起与其相应的数学模型,然后再用动态规划方法去求解.根据动态规划这些特点,要求我们在学好动态规划的基本原理和方法的同时,还应具有丰富的想象力,只有这样才能建好模型求出问题的最优解.
可根据时间变量是离散的还是连续的,把动态规划问题的模型分为离散决策过程和连续决策过程,根据决策过程的演变是确定性的还是随机性的,动态规划问题的模型又可分为确定性的决策过程和随机性的决策过程,即离散确定性,离散随机性,连续确定性,连续随机性四种决策过程模型.我们主要研究离散确定性模型.
2.随机规划和模糊规划是处理随机和模糊优化问题的两大数学规划工具,称之为不确定规划。主要目的是为不确定环境中的优化理论奠定一个基础。不确定规划理论由三大类组成:期望值模型,机 会约束规划和相关机会规划。
3.随机规划的概念比较少见
可以参考一下运筹学的分支
数学规划的研究对象是计划管理工作中有关安排和估值的问题,解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。它可以表示成求函数在满足约束条件下的极大极小值问题。
数学规划和古典的求极值的问题有本质上的不同,古典方法只能处理具有简单表达式,和简单约束条件的情况。而现代的数学规划中的问题目标函数和约束条件都很复杂,而且要求给出某种精确度的数字解答,因此算法的研究特别受到重视。
这里最简单的一种问题就是线性规划。如果约束条件和目标函数都是呈线性关系的就叫线性规划。要解决线性规划问题,从理论上讲都要解线性方程组,因此解线性方程组的方法,以及关于行列式、矩阵的知识,就是线性规划中非常必要的工具。
线性规划及其解法—单纯形法的出现,对运筹学的发展起了重大的推动作用。许多实际问题都可以化成线性规划来解决,而单纯形法有是一个行之有效的算法,加上计算机的出现,使一些大型复杂的实际问题的解决成为现实。
非线性规划是线性规划的进一步发展和继续。许多实际问题如设计问题、经济平衡问题都属于非线性规划的范畴。非线性规划扩大了数学规划的应用范围,同时也给数学工作者提出了许多基本理论问题,使数学中的如凸分析、数值分析等也得到了发展。还有一种规划问题和时间有关,叫做“动态规划”。近年来在工程控制、技术物理和通讯中的最佳控制问题中,已经成为经常使用的重要工具。
排队论是运筹学的又一个分支,它有叫做随机服务系统理论。它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。
排队论最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。
因为排队现象是一个随机现象,因此在研究排队现象的时候,主要采用的是研究随机现象的概率论作为主要工具。此外,还有微分和微分方程。排队论把它所要研究的对象形象的描述为顾客来到服务台前要求接待。如果服务台以被其它顾客占用,那么就要排队。另一方面,服务台也时而空闲、时而忙碌。就需要通过数学方法求得顾客的等待时间、排队长度等的概率分布。
排队论在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。
对策论也叫博弈论,前面讲的田忌赛马就是典型的博弈论问题。作为运筹学的一个分支,博弈论的发展也只有几十年的历史。系统地创建这门学科的数学家,现在一般公认为是美籍匈牙利数学家、计算机之父——冯·诺依曼。
最初用数学方法研究博弈论是在国际象棋中开始的——如何确定取胜的着法。由于是研究双方冲突、制胜对策的问题,所以这门学科在军事方面有着十分重要的应用。近年来,数学家还对水雷和舰艇、歼击机和轰炸机之间的作战、追踪等问题进行了研究,提出了追逃双方都能自主决策的数学理论。近年来,随着人工智能研究的进一步发展,对博弈论提出了更多新的要求。
搜索论是由于第二次世界大战中战争的需要而出现的运筹学分支。主要研究在资源和探测手段受到限制的情况下,如何设计寻找某种目标的最优方案,并加以实施的理论和方法。在第二次世界大战中,同盟国的空军和海军在研究如何针对轴心国的潜艇活动、舰队运输和兵力部署等进行甄别的过程中产生的。搜索论在实际应用中也取得了不少成效,例如二十世纪六十年代,美国寻找在大西洋失踪的核潜艇“打谷者号”和“蝎子号”,以及在地中海寻找丢失的氢弹,都是依据搜索论获得成功的。
运筹学有广阔的应用领域,它已渗透到诸如服务、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性、等各个方面。
应该排队论和随机规划是比较接近的
具体的还希望你问一下专业的老师
希望对你有帮助
② 数学建模 分配问题
10/1000=1/100,所以大体上是从100人中选出一个委员来。
因各宿舍的人数均不是100的整数倍,所以,必有一人是从余数中选出的,在余数中,A舍的人数较多,为25,可从A舍中多选一人当委员。
如果是15名委员,15/1000=3/200,所以是从200人中选3人。
这样,从A舍选3人,从B选5人,从C选7人。
③ 数学建模问题中人力资源安排问题
恩,数学建模得了解了解
④ 数学建模题平均分配问题
(1)不公平.
⑤ 有关数学建模成员分配的问题
不可以请校外同学,我参加的时候也是参考下面一个前辈写的,写得很好,拿出来分享:
数学建模竞赛是三个人的活动,参加竞赛首要是要组队,而怎么样组队是有讲究的。此外还需要分工等等
一般的组队情况是和同学组队,很多情况是三个人都是同一系,同一专业以及一个班的,这样的组队是不合理的。让三人一组参赛一是为了培养合作精神,其实更为重要的原因是这项工作需要多人合作,因为人不是万能的,掌握知识不是全面的,当然不排除有这样的牛人存在,事实上也是存在的,什么都会,竞赛可以一个人独立搞定。但既然允许三个人组队,有人帮忙总是好的,至少不会太累。而三个人同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。
众所周知,数学建模特别需要数学和计算机的能力,所以在组队的时候需要优先考虑队中有这方面才能的人,根据现在的大学专业培养信息与计算科学,应用数学专业的较为有利,尤其是信息与计算科学可以说是数学和计算机专业的结合,两方面都有兼顾,虽然说这个专业的出路不是很好,数学和计算机都涉及点但是都没有真正的学通这两门专业的,但对于弄数学建模来说是再合适不过了。应用数学则偏重于数,但是一般来讲玩计算机的时间不会太少,尤其是在科学计算和程序设计都会设计到比较多,又有深厚的数学功底,也是很不错的选择。
有不少的人会认为第一人选是数学方面的那第二人选就应该考虑计算机了,因为学计算机的会程序,其实这个概念可以说是对也可以说是不对的。之所以需要计算机方面的人是为了弥补数学方面的人在算法实践方面的不足,但是不是所有的计算机方面专业人都擅长算法实践的,如果要选的话就选擅长算法分析实践的,因为学计算机的不一定会程序,并且会程序的不一定会算法。拿出一个算法,让学计算机的编写程序实践不一定能行,不是小看计算机的,但是这种情况还是比较多的,不然可以看到参加ACM的数学系的居多,比学计算机的搞的好。因此一定要弄清这个概念,不是计算机的就适合的。
所以在组队中有两种人是必需的,一个是对建模很熟悉的,对各类算法理论熟悉,在了解背景后对此背景下的各类问题能建立模型,设计求解算法。一个是能将算法编制程序予以实现,求得解。当然有可能是一个人就将这两种都具备了,这样的话再找个任意具备上述两种能力的人就可以了,以减轻工作量,不然非累死不可。第三个就是专门需要写作的拉,从专业角度看是需要别的专业,比较适合的有生物、土木、机电、电信或机械等专业。在数学建模中各种背景的问题都会出现,所以有其他专业同学的话可以弥补专业知识方面的不足。
综上所述,组队要根据分工而来的,三个人要具备一个数学功底深厚,理论扎实,一个擅长算法实践,另一个是写作(弥补专业知识不足),如果一个组能有这样的人员配置是比较合理的。但是往往事事不能如意,所以不能满足这种人员配置的时候就尽量往这样人员配置靠。
废话说了一大堆,自己也烦了,休息下了。
补充,你不要以为你数学功底差,你再去看看计科系或者其他系的人的数学功底就知道了。而且我觉得数学建模要不了多少数学功底,考验的恰恰是你的自学能力和想象力。
⑥ 数学建模的利润分配问题
你的资源表表示不直观,我重新建个图表表示。
解:设每天生产a、b、c型号玩具分别为x、y、z件,x、y、z∈n*,
每天耗用劳动力资源(小时)为:3x+4y+4z≤420
每天耗用原材料资源(kg)为:2x+3y+2z≤300
每天可得利润(元):s=5x+7y+9z
从资源表可看出,生产一件b和一件c玩具,耗费劳动力均为4小时,耗费原材料分别为3、2kg,而利润分别为7、9元,生产玩具b不合算。要使每天所得利润最大,那么就不能生产b玩具,因为生产一件产品,生产玩具c比生产玩具b耗费资料少,且利润更高。
∴上式中,y=0
每天耗用劳动力资源(小时)为:3x+4z≤420
每天耗用原材料资源(kg)为:2x+2z≤300
;x+z=150≤150
每天可得利润(元):s=5x+9z
以x轴为横轴,以z轴为纵轴,o为坐标原点建立直角坐标系,令s=0得直线5x+9z=0,s=5x+9z表示平行于直线5x+9z=0的直线系,将原题转化线性规化问题,求线性目标函数s=5x+9z的最优解。可行域为图示阴影部分,当x不变,增加z时,s=5x+9z是逐渐增大的,所以将直线5x+9z=0平行向上移动,s是逐渐增大的。
要使利润s最大,当直线s=5x+9z经过点(0,105)时,s取得最大值,此时x=0,z=105
s最大值=5x+9z=5×0+9×105=945(元)
此时,每天生产z=105件c型玩具,耗劳动力4z=420小时,耗原材料2z=210kg,
答:每天生产105件c型玩具,不生产a和b型玩具时,每天获得利润最大,最大利润值为945元。
⑦ 数学建模关于分配问题的疑问
你说的问题不是很具体。但我的理解是大家轮流休息,休息的时候讲究策略。保证每个工作同事完成,且说有人用的时间都是一样的。策略你自己考虑应该不难。
关键是公平。
⑧ 2011数学建模D题,天然肠衣搭配问题,怎么分配呀求解释、、、
根据以上成品和原料描述,设计一个原料搭配方案,工人根据这个方案“照方抓药”进行生产。
公司对搭配方案有以下具体要求:
(1) 对于给定的一批原料,装出的成品捆数越多越好;
(2) 对于成品捆数相同的方案,最短长度最长的成品越多,方案越好;
(3) 为提高原料使用率,总长度允许有± 0.5米的误差,总根数允许比标准少1根;
(4) 某种规格对应原料如果出现剩余,可以降级使用。如长度为14米的原料可以和长度介于7-13.5米的进行捆扎,成品属于7-13.5米的规格;
(5) 为了食品保鲜,要求在30分钟内产生方案。
请建立上述问题的数学模型,给出求解方法,并对表1、表2给出的实际数据进行求解,给出搭配方案。