⑴ 刘微的数学成就有哪些
1清理了中国古代数学体系并奠定了它的基础。
2在继承的基础上提出了自己的创见。
⑵ 刘徽和祖冲之等着名古代数学家的成就有什么重要意义
刘徽和祖冲之父子的成就表明中国人的数学才能是卓越的。如果历史能够使下一代人在他们成就的基础上连续地研究,就会使数学进入崭新的领域,但古代社会常常不能保证这一点。在数学方面还应提到北魏人张丘建所撰的《张丘建算经》、北周人甄鸾所撰的《五曹算经》和《五经算术》。这三部书都在算经十书之列。其中张丘建在他的着作中提到了前代的名着《孙子算经》。
⑶ 魏晋期间的数学家刘徽在圆周率方面的贡献有哪些成就
刘徽创造的割圆术计算方法,只用圆内接多边形面积,而无需外切形面积,从而简化了计算程序,为计算圆周率和圆面积建立起相当严密的理论和完善的算法。
同时,为解决圆周率问题,刘徽所运用的初步的极限概念和直曲转化思想,这在古代也是非常难能可贵的。
在刘徽之后,我国南北朝时期杰出的数学家祖冲之,把圆周率推算到更加精确的程度,比欧洲人早了800多年,取得了极其光辉的成就。刘徽是魏晋期间伟大的数学家,我国古典数学理论的奠基者之一。他创造了许多数学方面的成就,其中在圆周率方面的贡献,同样源于他的潜心钻研。
有一次,刘徽看到石匠在加工石头,觉得很有趣,就仔细观察了起来。石匠一斧一斧地凿下去,一块方形石料就被加工成了一根光滑的圆柱。
谁会想到,原本一块方石,经石匠师傅凿去4个角,就变成了八角形的石头。再去8个角,又变成了十六边形。这在一般人看来非常普通的事情,却触发了刘徽智慧的火花。
他想:“石匠加工石料的方法,为什么不可以用在圆周率的研究上呢?”
于是,刘徽采用这个方法,把圆逐渐分割下去,一试果然有效。刘徽独具慧眼,终于发明了“割圆术”,在世界上把圆周率计算精度提高到了一个新的水平。
9999魏晋之际的数学家刘徽在计算圆周率方面做出的贡献有哪些?
魏晋之际的杰出数学家刘徽,在计算圆周率方面,作出了非常突出的贡献。
他在为古代数学名着《九章算术》作注的时候,指出“周三径一”不是圆周率值,而是圆内接正六边形周长和直径的比值。而用古法计算出的圆面积的结果,不是圆面积,而是圆内接正十二边形面积。
经过深入研究,刘徽发现圆内接正多边形边数无限增加的时候,多边形周长无限逼近圆周长,从而创立割圆术,为计算圆周率和圆面积建立起相当严密的理论和完善的算法。
刘徽割圆术的基本思想是:割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣。
就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值。他很清楚圆内接正多边形的边数越多,所求得的圆周率值越精确这一点。
刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地增加,即12、24、48、96,因而逐个算出正六边形、正十二边形、正二十四边形等的边长,使“周径”之比的数值逐步地逼近圆周率。
他做圆内接九十六边形时,求出的圆周率是3.14,这个结果已经比古率精确多了。刘徽利用“幂”和“差幂”来代替对圆的外切近似,巧妙地避开了对外切多边形的计算,在计算圆面积的过程中收到了事半功倍的效果。刘徽首创“割圆术”的方法,可以说他是我国古代极限思想的杰出代表,在数学史上占有十分重要的地位。他所得到的结果在当时世界上也是很先进的。
刘徽所处的时代是社会上军阀割据,特别是当时魏、蜀、吴三国割据,那么在这个时候中国的社会、政治、经济发生了极大的变化,特别是思想界,文人学士们互相进行辩难。
所以当时成为辩难之风,一帮文人学士来到一块,就像我们大专辩论会那样,一个正方一个反方,提出一个命题来大家互相辩论。在辩论的时候人们就要研究讨论关于辩论的技术,思维的规律,所以在这一段人们的思想解放,应该说是在春秋战国之后没有过的,这时人们对思维规律的研究特别发达,有人认为这时人们的抽象思维能力远远超过春秋战国时期。
刘徽在《九章算术注》的自序中表明,把探究数学的根源,作为自己从事数学研究的昀高任务。他注《九章算术》的宗旨就是“析理以辞,解体用图”。“析理”就是当时学者们互相辩难的代名词。刘徽通过析数学之理,建立了中国传统数学的理论体系。
在刘徽之后,祖冲之所取得的圆周率数值可以说是圆周率计算的一个跃进。据《隋书·律历志》记载,祖冲之确定了圆周率的不足近似值是3.1415926,过剩近似值是3.1415927,真值在这两个近似值之间,成为当时世界上昀先进的成就。
天元术和四元术是我国古代求解高次方程的方法。天元术是列方程的方法,四元术是高次方程组的解法。13世纪,高次方程的数值解法是数学难题之一。当时许多数学家都致力于这个问题。
在我国古代,解方程叫作“开方术”。宋元时,开方术已经发展到历史的新阶段,已经达到了当时的世界先进水平。
我国古代历史悠久,特别是数学成就更是十分辉煌,在民间流传着许多趣味数学题,一般都是以朗朗上口的诗歌形式表达出来。其中就有许多方程题。比如有一首诗问周瑜的年龄:
大江东去浪淘尽,千古风流数人物。而立之年督东吴,早逝英年两位数。十比个位正小三,个位六倍与寿符。哪位学子算得快,多少年华属周瑜?
依题意得周瑜的年龄是两位数,而且个位数字比十位数字大3,若设十位数字为x,则个位数字为(x+3),由“个位6倍与寿符”可列方程得:6(x+3)=10x+(x+3),解得x=3,所以周瑜的年龄为36岁。这些古代方程题非常有趣,普及了数学知识,激发了人们的数学思维。
在古代数学中,列方程和解方程是相互联系的两个重要问题。宋代以前,数学家要列出一个方程,如唐代着名数学家王孝通撰写的《缉古算经》,首次提出三次方程式正根的解法,能解决工程建设中上下宽狭不一的计算问题,是对我国古代数学理论的卓越贡献,比阿拉伯人早300多年,比欧洲早600多年。
随着宋代数学研究的发展,解方程有了完善的方法,这就直接促进了对于列方程方法的研究,于是出现了我国数学的又一项杰出创造—天元术。
⑷ 魏晋南北朝时期刘徽的突出数学成就有哪些
用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
割圆术与圆周率, 他在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3.14,又算到3072边形的面积,得到π=3927/1250=3.1416,称为“徽率”。
刘徽原理 在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
在《九章算术 开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一着名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
在《九章算术 方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和 累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
⑸ 在数学方面,刘徽有什么贡献
刘徽最大的成就是他注释了《九章算术》,在这一过程中,刘徽取得了许多创造性的成就。经他作注的《九章算术》对我国数学的发展产生了深远的影响,成为东方数学的代表作之一。
⑹ 刘徽的数学成就是什么
刘徽(生于公元250年左右),东汉三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一。其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。
刘徽的主要着作有:《九章算术注》10卷;《重差术》1卷,至唐代易名为《海岛算经》;《九章重差图》1卷,可惜后两种都在宋代失传。
刘徽的数学成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
在数系理论方面:用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
在筹式演算理论方面:先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
在勾股理论方面:逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
在面积与体积理论方面:用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
割圆术与圆周率:刘徽在《九章算术?圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π=157/50=3?14,又算到3072边形的面积,得到π=3927/1250=3?1416,称为“徽率”。
刘徽原理:在《九章算术?阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
“牟合方盖”说:在《九章算术?开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一着名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
方程新术:在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
重差术:在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。
刘徽的《九章算术》是我国流传至今最古老的数学专着之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学着作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。
《九章算术》的产生是社会发展和数学知识长期积累的结果,它汇集了不同时期数学家的劳动成果。刘徽认为:“周公制礼有九数,九数之流,则《九章》是矣。……汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补。故校其目则与古或异,而所论多近语也。”根据刘徽的考证结果,《九章算术》源于周公时代的“九数”,而他所见到的《九章算术》是西汉时的张苍、耿寿昌在先秦遗文的基础上删补而成的,其中包括了大量西汉时补充的内容。根据历史文献和出土文物资料来分析,刘徽所言是可信的。
《九章算术》所包含的各种算法是汉朝数学家们在秦以前流传下来的数学基础上,适应当时的需要补充修订而成的。按照刘徽的考证,张苍和耿寿昌都是参加过修订工作的主要数学家。《史记?张丞相列传》记载,张苍(约前250~前152)经历了秦、汉两个朝代,他在高帝六年(前201)以攻藏茶有功封为北平侯。“自秦时为柱下史,明天下图书计籍。又善用算律历。”他还“着书18篇,言阴阳律历事。”耿寿昌的生年年代不详,汉宣帝时官至大司农中丞,“以善为算,能商功利”得宠于皇帝。他于天文学主张浑天说,甘露二年(前52)奏“以圆仪度日月行,考验天运状”。张苍和耿寿昌都是数学名家,又身居高位,由他们主持修订先秦流传下来的《算术》是很自然的事情。根据刘徽的记载,他所注释的《九章算术》最后是由耿寿昌删定的。我们认为耿寿昌删补《九章算术》的年代可以定为这部书完成的年代。
《九章算术》是由国家组织力量编纂的一部官方性数学教科书,对两汉时期数学的发展产生了很大的影响。《广韵》卷四有“九章术,汉许商、杜志、吴陈炽、王粲并善之”,《后汉书?马援传》有马续(约70~141)“博观群籍,善九章算术”的记载。此外,史书中还有郑玄(127~200)、刘洪等人“通九章算术”的记述。可知该书是当时学习数学的重要教材,在东汉光和二年(179)一块铜版上的铭文规定:“大司农以戊寅(138?)诏书,……特更为诸州作铜斗、斜、称。依黄钟律历,《九章算术》以均长短、轻重、大小,以齐七政,令海内都同。”这说明该书在东汉时期不仅广为流传,而且度量衡研制涉及的数学问题也要以书中的算法为依据。许商、杜志可能是《九章算书》成书后最早研究过该书的数学家。许商、杜志都是西汉后期的数学家。《汉书?艺文志》着录有《许商算术》26卷、《杜志算术》16卷。这两部书都是汉成帝三年(前26)尹咸校对数术着作之前撰写的。许商、杜志的着作完成年代与耿寿昌删补《九章算术》的年代相去不远,他们的数学着作应当是在研究了《九章算术》的基础上完成的。
《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。
刘徽的《九章》注不仅在整理古代数学体系和完善古算理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。
刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
⑺ 古代数学家刘徽哪里人有哪些数学成就
刘徽,淄乡(今山东邹平)人。生卒年不详,活动于公元3世纪,数学家。
刘徽自述“幼习《九章》,长再详览,观阴阳之割裂,总算术之根源,探赜之暇,遂悟其意,是以敢竭顽鲁,采其所见,为之作注”。《晋书》、《隋书》之“律历志”称“魏陈留王景元四年(263)刘徽注《九章》”。《九章算术注》原10卷,第10卷“重差”为刘徽自撰自注,大约在南北朝后期单行,因其第l问为测望海岛之高、远,遂称为《海岛算经》。唐李淳风编纂《算经十书》,刘、李注《九章算术》与《海岛算经》并列为其中的两部。刘徽又着《九章重差图》l卷,已失传。刘徽在北宋大观三年(1109)被封为淄乡男。同时所封60余人,多依其里贯。据《汉书》“地理志”、“王子侯表”以及北宋王存《元丰九域志》所载资料考证,淄乡在今山东省邹平县境,汉淄乡侯为文帝子梁王刘武之后。
⑻ 陶渊明的诗歌有何风格,刘徽在数学方面有何成就
刘徽是魏晋时期的数学家,虽然他比赵爽(勾股弦图的发明者)晚出生了四十几年,但是他的成就在我国数学史,乃至世界数学史上都是举世瞩目的。
魏末晋初,在长期独尊儒术之后,学术界思辨之风再起,以阮籍、嵇康为首的“竹林七贤”成为不拘礼法、清静无为的典型代表,他们崇尚自然,不问世事,喜好清谈或是玄谈。在这种独特的“魏晋风骨”影响下,中国的数学界也掀起了论证的风潮。经历了由混乱到大一统的变迁的刘徽,受此影响,对《九章算术》里面的一些问题与解法进行了论证与注释。
《九章算术》是《算经十书》中最重要的一本,它是由先秦至西汉的众多学者编撰所成的一部经典着作,组成方式类似西方基督教的经典着作——《圣经》。它的涉及面很广,记载了方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9类246个与生产、生活实践有联系的应用问题。
这样说大家可能听得不是很明白,简单解释一下,像方田、少广、商功就是现在的面积、体积等几何问题,粟米、衰分、均输就是我们现在所说的比例问题,盈不足就是现在的盈亏问题,这个在小学奥数就已经在学了,方程与勾股比较好理解,中学生应该都懂。
《九章算术》在许多方面都做出了精彩的范例和解答:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。但因解法比较原始,缺乏必要的证明。而刘徽就是对此均作了补充证明,写成了长达10卷的《九章算术注》,并在这些证明中,显示了他在众多方面的创造性贡献。
刘徽之所以能在数学上取得如此巨大的成就,主要有以下几点原因:
首先,刘徽是个富有批判精神的人。刘徽研究数学会借鉴前人之路,但不会迷信前人的定论。他批评那种墨守成规的思想,指出:“学者踵古,习其缪失。”正是这种批判精神,支持着刘徽深入研究《九章算术》,并在此基础上写出了名垂千古的《九章算术注》。
其次,刘徽是个善于发现问题本质的人。刘徽面对《九章算术》的九章264个问题,按照自己的想法给予归类,并且给出了自己的解决方式,比如:他用出入相补法来解决几何图形问题,用重差法解决各种测量问题,用今有术来解决比例问题……做到“事类相推,各有攸归。”
最后,刘徽是个善于借助工具的人。面对枯燥、空洞的数学问题,刘徽善于借用图形来解决实际问题。不论是前面的割圆术,还是在《九章算术注》记载的棋验法(即立体几何模型法),又或者是在各种几何图形涂上色,这一切都是刘徽善于借助工具,化抽象为直观的表现。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。而由于他在数学史上的突出贡献,也有人称他为“中国数学史上的牛顿”。
⑼ 刘徽对我国数学史的贡献有哪些
刘徽对《九章算术》所作的注释工作也是很有名的,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了我国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。
⑽ 刘徽取得的重大成就及历史地位
主要成就:清理中国古代数学体系 ,提出牟合方盖、重差术等方法。
代表作品:《九章算术注》,《海岛算经》。
《九章算术》不仅在中国数学史上占有重要地位,对世界数学的发展也有着重要的贡献。分数理论及其完整的算法,比例和比例分配算法,面积和体积算法,以及各类应用问题的解法,在书中的方田、粟米、衰分、商功、均输等章已有了相当详备的叙述。而少广、盈不足、方程、勾股等章中的开立方法、盈不足术(双假设法)、正负数概念、线性联立方程组解法、整数勾股弦的一般公式等内容都是世界数学史上的卓越成就。
传本《九章算术》有刘徽注和唐李淳风等的注释。刘徽是中国古代杰出的数学家,他生活在三国时代的魏国。《隋书·律历志》论历代量制引商功章注,说“魏陈留王景元四年(263)刘徽注《九章》。”他的生平不可详考。刘徽的《九章》注不仅在整理古代数学体系和完善古算 理论方面取得了重要成就,而且提出了丰富多彩的创见和发明。
刘徽在算术、代数、几何等方面都有杰出的贡献。例如,他用比率理论建立了数与式的统一的理论基础,他应用了出入相补原理和极限方法解决了许多面积和体积问题,建立了独具风格的面积和体积理论。他对《九章》中的许多结论给出了严格的证明,他的一些方法对后世有很大启发,即使对现今数学也有可借鉴之处。