① 初一数学概念有哪些
一、有理数
0既不是正数,也不是负数。
正整数、负整数、0统称为整数。
整数可以看作分母为1的分数.正整数、0负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
原点、正方向、单位长度是数轴三要素。
只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.
数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、 一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
有理数的减法法则:
减去一个数,等于加上这个数的相反数。
有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的
数,都得0。
求n个相同因数的积的运算,叫做乘方。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;
0的任何次正整数次幂都是0。
有理数的混合运算顺序:
1先乘方,再乘除,最后加减;
2同级运算,从左到右进行;
3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。
用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。
四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字。
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
二、整式
单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
三、一元一次方程
方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程。
等式两边加(或减)同一个数(或式子),结果仍相等。
等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项。
卖价=进价+利润
利润=卖价-进价
利润率=利润÷进价×100%
卖价=进价×(1+利润率)
利润=进价×利润率
四、图形
直线
(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。
射线
(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
线段
(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。
线段的中点:把一条线段分成两条相等线段的点。
角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边。
角度制及换算:
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:
1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;
角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等
② 苏科版七年级上册数学所有概念
苏科版七年级上数学知识点归纳 正数和负数 ⒈正数和负数的概念 负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2.具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃ 3.0表示的意义 ⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人; ⑵0是正数和负数的分界线,0既不是正数,也不是负数。如: 有理数 1.有理数的概念 ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数 ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。 注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8„也是偶数,-1,-3,-5„也是奇数。 2.有理数的分类 ⑴按有理数的意义分类 ⑵按正、负来分
正整数
正整数 整数 0 正有理数 负整数 正分数 有理数 有理数 0 (0不能忽视) 正分数 负整数 分数 负有理数 负分数 负分数 总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④负有理数、0统称为非正有理数 数轴 ⒈数轴的概念 规定了原点,正方向,单位长度的直线叫做数轴。 注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不
可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。 2.数轴上的点与有理数的关系 ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π
不是有理数) 3.利用数轴表示两数大小 ⑴在数轴上数的大小比较,右边的数总比左边的数大; ⑵正数都大于0,负数都小于0,正数大于负数; ⑶两个负数比较,距离原点远的数比距离原点近的数小。 4.数轴上特殊的最大(小)数 ⑴最小的自然数是0,无最大的自然数; ⑵最小的正整数是1,无最大的正整数; ⑶最大的负整数是-1,无最小的负整数 5.a可以表示什么数 ⑴a>0表示a是正数;反之,a是正数,则a>0; ⑵a<0表示a是负数;反之,a是负数,则a<0 ⑶a=0表示a是0;反之,a是0,,则a=0 6.数轴上点的移动规律 根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。 相反数 ⒈相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2.相反数的性质与判定 ⑴任何数都有相反数,且只有一个; ⑵0的相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3.相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。 说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5); ⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b); ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5) 5.相反数的表示方法 ⑴一般地,数a 的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。 当a>0时,-a<0(正数的相反数是负数) 当a<0时,-a>0(负数的相反数是正数) 当a=0时,-a=0,(0的相反数是0) 6.多重符号的化简 多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。 绝对值 ⒈绝对值的几何定义 一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。 2.绝对值的代数定义 ⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0. 可用字母表示为: ①如果a>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。 可归纳为①:a≥0,<═> |a|=a (非负数的绝对值等于本身;绝对值等于本身的数是非负数。) ②a≤0,<═> |a|=-a (非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。) 3.绝对值的性质 任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0 <═> |a|=0; ⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0; ⑶任何数的绝对值都不小于原数。即:|a|≥a; ⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a; ⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|; ⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b; ⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。 (非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0) 4.有理数大小的比较 ⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小; ⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
打字累,求采纳
③ 初一上册数学所有定义,以填空出现
第一章 丰富的图形世界
1. 棱柱有(直棱柱)和(斜棱柱)。
2. 图形是由(点、线、面)构成的。
3. 面与面相交得到(线),线与线相交得到(点)。
4. 点动成(线),线动成(面),面动成(体)。
5. 在棱柱中,任何相邻两个面的交线都叫做(棱),相邻两个侧面的交线叫做(侧棱),棱柱的所有侧棱长都(相等)。棱柱的上、下底面的形状相同,侧面的形状都是长方形。
6. 用一个平面去截一个长方体,截出的面叫做(截面)。
7. 把从正面看到的图叫做(主视图),从左面看到的图叫做(左视图),从上面看到的图叫做(俯视图)。
8. (平面图形)是由一些不在同一条直线上的线段一次首尾相连组成的封闭图形。
9. 有一条弧和经过这条弧的端点的两条半径所组成的图形叫做(扇形)。
第二章 有理数及其运算
1.有理数:(整数 正数、0、负数) ;无理数:(分数 正数、负数 )
2. 比0高的数,叫做(正数),用符号+(读作:正)来表示。
3. 比0低的数,叫做(负数),用符号-(读作:负)来表示。
4. (0)既不是正数,也不是负数。
5. 画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
6. 任何一个(有理数)都可以用数轴上的一个点来表示。
7. 如果两个数只有符号不同,那么我们称其中一个数为另一个数的(相反数),也称这两个数(互为相反数)。0的相反数是0。
8. 数轴上两个点表示的数,右边的总比左边的大。
9. 正数大于0,负数小于0,正数大于负数。
10. 在数轴上,一个数所对应的点与原点的距离叫做(该数的绝对值)。
11. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
12. 两个负数比较大小,绝对值大的反而小。
13. 同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
14. 减去一个数,等于加上这个数的相反数。
15. 两数相乘,同号的正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
16. 乘积为1的两个有理数(互为倒数)。
17. 两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0数都得0。0不能作除数。
18. 除以一个数等于乘以这个数的倒数。
19. 求n个相同因数a的积的运算叫做(乘方),乘方的结果叫做(幂),a叫做(底数),n叫做(指数)。
20. 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
第三章 字母表示数
1. 用运算符号连接的数或表示数的字母的式子叫做(代数式),单独一个数或一个字母也是代数式。
2. 字母相同,并且相同字母的指数也相同的项,叫做(同类项)。把同类项合并成一项就叫做(合并同类项)。
3. 在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4. 括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
第四章 平面图形及其位置关系
1. 线段有两个(端点);将线段向一个方向无限延长就形成了(射线),射线有一个端点;将线段向两个方向无限延长就形成了(直线),直线没有端点。
2. 经过两点有且有一条直线。
3. 两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这(两点之间的距离)。
4. 角是具有公共端点的两条射线组成的图形,两条射线的公共端点是这个角的顶点。
5. 角也可以看成是由一条射线围着它的端点旋转而成的。
6. 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个(角的平分线)。
7. 我们通常用“‖”表示平行。经过直线外一点,(有且只有一条直线)与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线互相平行;两条直线相交,只有一个交点。
8. 我们通常用“⊥”。平面内,过一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短。
9. 如果两条直线相交成直角,那么这两条直线互相垂直。
10. 互相垂直的两条直线的交点叫做垂足。
第五章 一元一次方程
1. 在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
2. 等式两边同时加上(或减去)同一个代数式,所的结果仍是等式。
3. 等式两边同时乘同一个数(或除以同一个不为0的数),所的结果仍是等式。
第六章 生活中的数据
1. 利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做(扇形统计图)。
2. 在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比。
3. 扇形统计图能清楚地表示出各部分在总体中所占的百分比。
4. 条形统计图能清楚地表示出每个项目的具体数目。
5. 折线统计图能清楚地反映事物的变化情况。
第七章 可能性
1. 生活中,有些事情我们事先能肯定它一定会发生,这些事情称为(必然事件)。有些事情我们事先能肯定它一定不会发生,这些事情称为(不可能事件)。必然事件与不可能事件都是(确定的)。
2. 也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件。不确定事件发生的可能性是由大小的
④ 苏科版所有初一(上)的数学定义
第一章 我们与数学同行
第二章 有理数
一、比零小的数
比0大的数是正数;比0小的数是负数;0既不是正数,也不是负数。
正数、负数可以表示相反意义的量。
0是自然数,是偶数。
正数、负数与0统称为整数(integer),正分数与负分数统称为分数(fraction),整数和分数统称为有理数(ratiomal number),即
正整数
整数 0
有理数 负整数
正分数
分数
负分数
⑤ 求人教版七年级上册数学所有概念
⑥ 七年级数学上册知识点总结
七年级数学上册知识点总结(通用8篇)⑦ 初一所有数学定义
1全等三角形的对应边、对应角相等 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 5 边边边公理(SSS) 有三边对应相等的两个三角形全等 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 7 定理1 在角的平分线上的点到这个角的两边的距离相等 8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 9 角的平分线是到角的两边距离相等的所有点的集合 10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 12 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 13 推论3 等边三角形的各角都相等,并且每一个角都等于60° 44 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 15 推论1 三个角都相等的三角形是等边三角形 16 推论 2 有一个角等于60°的等腰三角形是等边三角形 17 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 18直角三角形斜边上的中线等于斜边上的一半 19 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 20 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 21 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 22 定理1 关于某条直线对称的两个图形是全等形 23 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 24定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 25逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 勾股定理 多边形的内角和(N-2)180 多边形的外角和 旋转的定义!!!