⑴ 数学排列组合 A上3下3怎么算 A上1下5呢
A上3下3指3个数的全排列,即为3*2*1=6。A上1下5等于5。
排列可分选排列与全排列两种,在从n个不同元素取出m个不同元素的排列种,当m<n时,这个排列称为选排列;当m=n时,这个排列称为全排列。n个元素的全排列的个数记为Pn,
就是说,n个不同元素全部取出的排列数,等于正整数1到n的连乘积。正整数一到n的连乘积,叫做n的阶乘,用n!表示。我们规定0!=1。
(1)数学排列和组合怎么算扩展阅读:
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
⑵ 排列,组合怎么计算
排列:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
计算公式:
(2)数学排列和组合怎么算扩展阅读:
排列组合中的乘法原理和分步计数法:
1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
2、合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
⑶ 关于数学排列组合,A什么的C什么的到底怎么算举个例子。。
A开头的叫排列,C开头的叫组合。
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)。
注:当且仅当两个排列的元素完全相同,且元素的排列顺序也相同,则两个排列相同。例如,abc与abd的元素不完全相同,它们是不同的排列;又如abc与acb,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
⑷ 排列组合的公式
排列组合计算公式如下:
1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
(4)数学排列和组合怎么算扩展阅读
排列组合的发展历程:
根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。
由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。
然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。
⑸ 排列数和组合数的计算公式是什么
排列数 A(n,m) 即字母A右下角n 右上角m, 表示n取m的排列数
A(n,m)=n!/(n-m)!=n*(n-1)*(n-2)*……*(n-m+1)
A(n,m)等于从n 开始连续递减的 m 个自然数的积
组合数 C(n,m) 即 字母C右下角n 右上角m, 表示n取m的排列数
C(n,m)=n!/(m!*(n-m)!)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
C(n,m)等于(从n 开始连续递减的 m 个自然数的积)除以(从1开始连续递增的 m 个自然数的积)
(5)数学排列和组合怎么算扩展阅读:
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
C(n,m) 表示。(C即Combination).
C(n,m)=A(n,m)/m!=n!/((n-m)!*m!);C(n,m)=C(n,n-m);
⑹ 数学排列组合计算方法
看案例。
排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。发展历程虽然数学始于结绳计数的远古时代。
⑺ 数学里的排列组合是怎么回事 它的公式是怎么计算的
排列:就没有重复,但是有顺序的排放。比如1,2,3的排列有:123,132,213,231,312,321。
n个数的排列计算思路是:第一个位置上n个数都可以放;第二个位置上能放除了第一位置上数以外的所数,即n-1个。。。。。。以次类推。可以算出所有排列共有:n*(n-1)*...*1个。
n选m个数的排列,用这个思路可以得出:n*(n-1)*...*(n-m+1)
【共m个数相乘】
组合就是没有重复,但也没有顺序的排放。如上面1,2,3的排列中,这些数都是由123组成的,是同一个组合。(比如S.H.E的组合,这三个人怎么站,都是一个组合)
n选m个数的组合计算思路是:先算出n选m个数的排列:n*(n-1)*...*(n-m+1)
在算出同一组数有排列:m*(m-1)*...*1
可以得出组合数为:n*(n-1)*...*(n-m+1)
/
[m(m-1)*...*1]