❶ 初中数学所有符号。意思是什么。如+是什么意思。
+在初中除了加,还有正数的意思,比如1,就读作正一,+1
-除了减也还有负数的意思,-1,读作负一
√ ̄,根号,用来开平方的符号。例如根号9,开平方开出来就等于3,3×3等于9,9是3的平方
还有做证明题要用的∵ :因为 ∴所以
嗯,还有:
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 自然对数
lg(x) 以2为底的对数
log(x) 常用对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
[P] P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
这些是以后要用到的
❷ 数学中都有哪些符号都代表什么意思
∈是集合中的符号,表示属于关系,A∈B,表示集合A中的元素都在集合B的里面。tan是三角函数的符号,代表正切。
❸ 数学集合中的所有符号及其意义是什么
下面列举数学集合中的所有符号,并说明其意义:
(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N
(2)非负整数集内排除0的集,也称正整数集,记作N+(或N*)
(3)全体整数的集合通常称作整数集,记作Z
(4)全体有理数的集合通常简称有理数集,记作Q
(5)全体实数的集合通常简称实数集,记作R
(6)复数集合计作C
数学集合在数学上是一个基础概念。基础概念是不能用其他概念加以定义的概念,也是不能被其他概念定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。
❹ 所有数学符号具体含义
网络一下“数学符号具体含义”,你就知道!
http://wenku..com/view/d964dcba1a37f111f1855b09.html
❺ 数学符号是什么意思
数学符号*是乘号的意思。*还表示除0之外的数,例:N*表示正整数。
我们现在常用于乘法运算的符号有两个,一个是“×”,另一个是“·”。 “×”是由1631年英国数学家奥雷特最早提出的,“·”是由英国数学家赫锐奥特首创的。
其他信息
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010及2010版以上软件为例介绍操作方法:
打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。
在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
❻ 数学符号各有什么含义(请说出所有的符号)
(1)数量符号:如
:i,2+
i,a,x,自然对数底e,圆周率
∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(
),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“
”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“
”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C
),幂(aM),阶乘(!)等。
符号
意义
∞
无穷大
PI
圆周率
|x|
函数的绝对值
∪
集合并
∩
集合交
≥
大于等于
≤
小于等于
≡
恒等于或同余
ln(x)
以e为底的对数
lg(x)
以10为底的对数
floor(x)
上取整函数
ceil(x)
下取整函数
x
mod
y
求余数
小数部分
x
-
floor(x)
∫f(x)δx
不定积分
∫[a:b]f(x)δx
a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k)
对n进行求和,可以拓广至很多情况
如:∑[n
is
prime][n
<
10]f(n)
∑∑[1≤i≤j≤n]n^2
lim
f(x)
(x->?)
求极限
f(z)
f关于z的m阶导函数
C(n:m)
组合数,n中取m
P(n:m)
排列数
m|n
m整除n
m⊥n
m与n互质
a
∈
A
a属于集合A
#A
集合A中的元素个数
❼ 数学符号都有那些都是什么意思
整理了一些重要的数学符号。
有理数集Q
Q表示的意义是:有理数集。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
整数集合Z
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数,分数。
实数集R
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。
18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
❽ 数学常用符号有哪些,分别是什么意思
1 几何符号
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2 代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3运算符号
× ÷ √ ±
4集合符号
∪ ∩ ∈
5特殊符号
∑ π(圆周率)
6推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:º¹²³
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 自然对数
lg(x) 以2为底的对数
log(x) 常用对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
[P] P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,
如果f(n)是有结构式,f(n)应外引括号;
∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)],
如果f(n,r)是有结构式,f(n,r)应外引括号;
∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积,
如果f(n)是有结构式,f(n)应外引括号;
∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)],
如果f(n,r)是有结构式,f(n,r)应外引括号;
lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限,
如果f(x)是有结构式,f(x)应外引括号;
lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)],
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分,
如果f(x)是有结构式,f(x)应外引括号;
∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分,
如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;
∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分,
如果f(x,y)是有结构式,f(x,y)应外引括号;
∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,
如果A(n)是有结构式,A(n)应外引括号;
∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)],
如果A(n,r)是有结构式,A(n,r)应外引括号;
∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集,
如果A(n)是有结构式,A(n)应外引括号;
∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)],
如果A(n,r)是有结构式,A(n,r)应外引括号;
❾ 有谁能概括一下所有的数学符号的含义吗
数学符号(mathematical signs andsymbols)
在数学文献中用以表示数学概念、数学关系等的符号和记号。
数学符号是与数学同时产生的,数学中最早产生的概念是自然数概念,最早出现的数学符号则是数字符号。在所有已使用了文字的古代民族中都“发明”了数字记号,如古埃及人、巴比伦人、古希腊人、古中国人等(见记数法的“数字符号表”)。自然数概念的完善依赖于算术运算,在许多古代文明中很早就产生了算术运算及相应的符号,古代文明中一般用表意文字(古埃及、占巴比伦等)或不用符号而把两数并列(古希腊、古印度)表示加和乘,用特殊的符号表示减。中国古代由于依赖于算筹计算,所以不采用任何表示运算的符号(见筹算),必要时直接用文字叙述。
另一个最早产生的数学概念是几何图形。最初在研究几何图形时没采用特有的数学符号,公元2世纪起,古希腊的一些数学家开始采用表示几何图形(如三角形、四边形、圆等)和几何关系(如平行、垂直等)的符号,它们多以“象形”的方式构成(见初等几何符号)。
古代数学由于涉及的概念较少,关系比较简单,所以除数字符号外,不是非用符号不可的,所以采用符号是个别的甚至例外的事。欧几里得《几何原本》就没采用数学符号,10-12世纪的阿拉伯数学也以文字叙述为主。
15—16世纪,数学有了突飞猛进的发展,数学概念不断增多,数学关系日益复杂化。例如,人们的数的概念扩张到复数,指数、对数、方程等都有了长足的发展。由于概念的增多和关系的复杂化,依赖自然语言已无法精确地表述出数学概念和数学关系,必须建立精确的科学语言,否则将影响数学的进一步发展。数学发展的需要化为数学家创建数学符号的努力。在16—17世纪间,产生了系统的数学符号,韦达、奥特雷德、莱布尼茨等人在创立数学符号方面做了大量基础性工作。17世纪,数学已基本上符号化了,这是数学发展史上的一个飞跃,从此,数学概念和数学关系就表现出十分精确的性质,便于逻辑处理和计算,在符号化的基础上,数学迎来了近代的大发展。
考察数学符号的形成,有这样几种情况:(1)采用表意符号,如“+”、“-”、“×”、“÷”、“=”及开方、乘方等符号;(2)采用象形符号,如初等几何符号;(3)采用表述数学概念的拉丁语词的简化和缩写,如三角函数符号、一般函数符号.f、极限符号、微分积分符号等;(4)某些特定的符号,如π、e 、 ∈、角度符号等。
近现代数学的发展则保持了这样一个特点:在引入一种新的数学概念和数学关系的同时,也引入表示它们的符号。现代数学更进一步,还把数学中所需要的一部分逻辑形式化,用符号表示出来,即所谓“符号逻辑”或数理逻辑,关于符号的应用成为专门的学问。
最常见的数学符号一般有“+”“-”“×”“÷”“=”“>”“<”等。关于
它们的来历是这样的:
加减号“+”“-”是1489年德国数学家魏德曼在他的着作中首先使用的。英国
数学家奥屈特于1631年提出用“×”表示相乘,而另一种乘号“·”是英国数学家
赫锐奥特首创的。瑞士数学家拉哈在着作中正式将“÷”作为除号。等号“=”在
1540年首次被英国牛津大学的瑞柯德使用,后来经过法国数学家韦达和德国数学家莱
布尼茨的广泛使用,才为人们普遍接受。大于号“>”、小于号“<”也是英国数
学家赫锐奥特的创造。圆周率“π”是1737年瑞士大数学家欧拉第一个使用的,欧
拉还首先使用了函数记号“�(X)”、自然对数的底数“e”和虚数单位“i”,连加
号“∑”据说也是欧拉最早使用的。“∑”是希腊字母“σ”的大写,与英文的
“sum”(即中文“和”)的第一个字母“s”有渊源关系。法国哲学家和数学家笛卡儿
首次使用了平方根号“�”。
数学符号的使用是数学的重要特征,第一个系统使用数学符号的人是法国数学
家韦达。数学符号的系统使用是16世纪数学的一个重大进展,它使高度抽象的数学
材料有了合适的表达形式,同时为其他自然科学提供了最精确的语言,即数学语言。
http://www.eeeeee.org/wiki/%E6%95%B0%E5%AD%A6%E7%AC%A6%E5%8F%B7%E8%A1%A8
数学符号表
❿ 数学所有符号解释大全
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数