导航:首页 > 数字科学 > 数学和音乐如何联系电话

数学和音乐如何联系电话

发布时间:2022-07-18 15:37:42

㈠ 数学和音乐的关系

音乐中的简谱不就是数学中的阿拉伯数字吗?呵呵~~
简单来说它们没有关系,只是音乐中用到了阿拉伯数字而已
多研究报告指出,音乐训练能够带来正面效应,能培养婴儿的视觉空间感。虽然视觉空间感只是一种抽象的解决问题的技巧,却对数学的理解至关重要。
加州大学欧文分校的研究人员最近发现音乐训练和数学能力之间有着直接的联系。他们让一群2年级学生分成3组分别上钢琴课,英语,和不上课。然后,从每组学生中抽取一定比例的测试对象给他们进行附加的视觉空间训练,内容是玩一种特别设计的电视游戏。然后,测试这些人解决数学问题的能力,结果表明,在这些测试对象中,选择钢琴的学生的得分比选择英语课和不上课的学生的得分能力分别高出
24.7%和154.5%

㈡ 数学与音乐之间有什么联系

音乐与数学密切相关,得到高品质音乐训练的孩子在数理上往往表现较好,这是因为年轻音乐演奏者对于抽象时间与空间的思考上能获得增长和改善。

音乐能力对于解决建筑、工程、数学特别是与电脑相关的工作至关重要。有了这方面的增强加上语言阅读能力,年轻的音乐人几乎可以帮助自己,在他们决定想努力的任何领域上获得成功。




(2)数学和音乐如何联系电话扩展阅读:

数学是自然科学的基础,也是重大技术创新发展的基础。从科技史上看,几乎所有的重大发现都与数学的发展进步相关。近年来,数学更是成为航空航天、国防安全、生物医药、信息、能源、先进制造等领域不可或缺的重要支撑。

经过多年发展,我国在基础数学、应用数学等领域已进入国际前列。由于起步较晚,学科、地域发展不平衡等因素,我国数学领域的基础研究依然薄弱,原始创新尤为不足。

㈢ 数学与音乐有哪些联系

乐谱的书写是数学在音乐上显示其影响的最为明显的地方。在乐谱中,我们可以找到拍号(4:4,3:4或1:4等)、每个小节的拍子、全音符、二分音符、四分音符、八分音符等等。谱写乐曲要使它适合于每音节的拍子数,这相似于找公分母的过程——在一个固定的拍子里,不同长度的音符必须使它凑成一个特定的节拍。然而作曲家在创造乐曲时却能极其美妙而又毫不费力地把它们与乐谱的严格构造有机的融合在一起。对一部完整的作品进行分析,我们会看到每一个音节都有规定的拍数,而且运用了各种合适长度的音符。

除了上述数学与乐谱的明显联系外,音乐还与比例、指数曲线、周期函数以及计算机科学等相关联。毕达格拉斯的追随者们(公元前585-400)最先用比例把音乐和数学结合起来。他们发现在乐声的协调与所认识的整数之间有着密切的关系,拨动一根弦发出的声音依赖于弦的长度。他们还发现协和音是由长度与原弦长的比为整数比的绷紧的弦给出。事实上被拨动弦的每一种和谐的结合,都能表示为整数比。由增大成整数比的弦的长度,能够产生全部的音阶。例如,从一根产生音C的弦开始,接着C的16/15给出B,C的长度的6/5给出A,C的4/3给出G,C的3/2给出F,C的8/5给出E,C的16/9给出D,C的1/2给出低音C.

你可能感到惊奇,为什么平台钢琴有它特有的形状?实际上很多乐器的形状和结构都跟不同的数学概念联系着。指数函数就是其一。例如y=2x.乐器,无论是弦乐还是管乐,在他们的结构中都反映出指数曲线的形状。

对乐声本质的研究,在19世纪法国数学家傅立叶的着作中达到了顶峰。他证明了所有的乐声——不管是器乐还是声乐都能用数学表达式来描述,它们是一些简单的正弦周期函数的和。每种声音都有三种品质:音调、音量和音色,并以此与其他的乐声相区别。

傅立叶的发现,使人们可以将声音的三种品质通过图解加以描述并区分。音调与曲线的频率有关,音量与曲线的振幅有关,音色则与周期函数的形状有关。

很少有人既通晓数学又通晓音乐,这使得把计算机用于合成音乐及乐器设计等方面难于成功。数学的发现:周期函数,是现代乐器设计和计算机音响设计的精髓。许多乐器的制造都是把它们产生的声音的图像,与这些乐器理想声音的图像相比较然后加以改进的。电子音乐的忠实再生也是跟周期图像紧密联系着的。音乐家和数学家们将在音乐的产生和再生方面,继续担任着同等重要的角色。

㈣ 古代音乐和数学之间还有联系,有什么联系

在中国的古代,音乐这个科目与数学这个科目有着密切的联系。换一句话说,从古代开始音乐与数学常常会被放在一起来讨论。在中世纪时期中,有很大一部分国家的教育课程中都包含着数学与音乐这两门学科。比如在音乐的乐谱中总是会出现一些数字,这些数字是在音乐上并不是用来计算,而是用来区分曲谱的拍子。不同的数字排列,组成了音乐中的不同节拍。然而,作曲家在数学某个曲子的时候,也常常用一些类似与数学公式的式子来表示某一段音乐的节拍以及这一段音乐的速度

三、关于数学

数学是一门学科,学数学知识能够让我们快速适应这个世界的发展。

㈤ 在音乐教育中,如何让幼儿体验数学与音乐的关系

在音乐教育中,如何让幼儿体验数学与音乐的关系?

近日有网友针对自己孩子的学习情况提出了这样的问题:在音乐教育当中如何让幼儿能够理解数学和音乐的关系?音乐和数学本来就是两个不同的领域,而要将这两个领域糅合在一起可不是一件简单的事。但其实细心发现音乐与数学还是有很多相关联的地方,那到底该如何让幼儿关联学习呢?我们一起来了解一下。

在我们生活中,只要留心观察发现其实很多事物都存在一定的联系,就如同我们哲学上所讲的联系具有普遍性一样,因此在对幼儿的教育中,我们也可以参照这样的规律,让孩子多动脑,多思考音乐和数学的关系,有目的性的针对培养,不单单能够提高孩子的能动性,还能够让孩子的智力得到进一步发展。

㈥ 音乐与数学

数学与音乐

文章来源:《数学通报》

在这一轮课程改革中,“数学与文化”成为了数学和数学教育工作者最为关注的问题之一. 实际上,在很长一段时间内,许多数学和数学教育工作者已经在思考和研究这个问题, 在即将推行的“高中数学课程标准”中,明确的要求把“数学文化”贯穿高中课程的始终. 对于涉及“数学文化”的一系列理论问题,应该承认还没有讨论得很清楚, 还有很多的争论,例如,很多学者对“数学文化”这个说法也有疑义,我们认为这是很正常的. 对这些问题的研究,我们建议从两个方面同时进行, 一方面进行理论上的研究;另一方面,积极地开发一些“数学与文化”的实例,案例,课例,探索如何将“数学文化”渗透到课堂教学中,如何让学生从“数学文化”中提高数学素养, 在此基础上再进行一些理论上的思考,从实践到理论,做一些实证研究. 下面是我们提供的一个实例 ———数学与音乐,也可以看作一个素材,很希望工作在一线的教师能作进一步的开发,能使这样的素材以不同的形式进入课堂或课外活动.我们也希望有更多的人来开发这样的素材, 并希望这些素材能出现在教材中.

在数学课程标准的研制过程中,我们结识了一些音乐界的专家,他们给我们讲述了很多音乐和数学的联系,数学在音乐中的应用,他们特别强调,在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学. 他们还告诉我们,在音乐界,有一些数学素养很好的音乐家为音乐的发展做出了重要的贡献. 他们和我们都希望有志于音乐事业的同学们学好数学,因为在将来的音乐事业中,数学将起着非常重要的作用.

《梁祝》优美动听的旋律《,十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫 ……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系?

其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来[1]. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生了 , 而且在西方音乐界占据了统治地位. 虽然托勒密(C. Ptolemy ,约100 —165 年) 对毕达哥拉斯音阶的缺点进行了改造 ,得出了较为理想的纯律音阶(the Just Scale) 及相应的调音理论 ,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶(the temperedScale) 及相应的调音理论出现才被彻底动摇. 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子.地员篇》和《吕氏春秋.音律篇》中分别有述;明代朱载 (1536 - 1610) 在其音乐着作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义 ?内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次.由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学.乐谱的书写离不开数学.

看一下乐器之王 ———钢琴的键盘吧,其上也恰好与斐波那契数列有关. 我们知道在钢琴的键盘上,从一个 C 键到下一个 C 键就是音乐中的一个八度音程(如图1) . 其中共包括13 个键,有8 个白键和5 个黑键 ,而 5 个黑键分成 2 组 ,一组有 2 个黑键 ,一组有 3 个黑键.2、3、5、8、13 恰好就是着名的斐波那契数列中的前几个数.

如果说斐波那契数在钢琴键上的出现是一种巧合, 那么等比数列在音乐中的出现就决非偶然了: 1、2、3、4、5、6、7、i等音阶就是利用等比数列规定的. 再来看图1,显然这个八度音程被黑键和白键分成了12个半音,并且我们知道下一个 C键发出乐音的振动次数(即频率) 是第一个 C 键振动次数的 2倍,因为用2 来分割,所以这个划分是按照等比数列而作出的. 我们容易求出分割比 x ,显然 x 满足 x12= 2 ,解这个方程可得 x 是个无理数 , 大约是 1106.于是我们说某个半音的音高是那个音的音高的1106 倍 ,而全音的音高是那个音的音高 11062 倍. 实际上,在吉它中也存在着同样的等比数列[3].

音乐中的数学变换.

数学中存在着平移变换,音乐中是否也存在着平移变换呢 ?我们可以通过两个音乐小节[2]来寻找答案. 显然可以把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移, 这实际上就是音乐中的反复. 把两个音节移到直角坐标系中,那么就表现为图 3. 显然,这正是数学中的平移. 我们知道作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的. 比如, 图 4 就是西方乐曲 When the Saints GoMarching In 的主题[2] ,显然 ,这首乐曲的主题就可以看作是通过平移得到的.

如果我们把五线谱中的一条适当的横线作为时间轴(横轴 x) ,与时间轴垂直的直线作为音高轴(纵轴y) ,那么我们就在五线谱中建立了时间 - 音高的平面直角坐标系. 于是, 图 4 中一系列的反复或者平移,就可以用函数近似地表示出来[2] , 如图 5 所示,其中 x 是时间, y 是音高. 当然我们也可以在时间音高的平面直角坐标系中用函数把图2中的两个音节近似地表示出来.

在这里我们需要提及十九世纪的一位着名的数学家,他就是约瑟夫.傅里叶 (Joseph Fourier) ,正是他的努力使人们对乐声性质的认识达到了顶峰. 他证明了所有的乐声, 不管是器乐还是声乐, 都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和[1].

音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等. 图6 的两个音节就是音乐中的反射变换[2]. 如果我们仍从数学的角度来考虑,把这些音符放进坐标系中, 那么它在数学中的表现就是我们常见的反射变换,如图 7所示. 同样我们也可以在时间 - 音高直角坐标系中把这两个音节用函数近似地表示出来.

通过以上分析可知,一首乐曲就有可能是对一些基本曲段进行各种数学变换的结果.

大自然音乐中的数学.

大自然中的音乐与数学的联系更加神奇,通常不为大家所知. 例如[2] , 蟋蟀鸣叫可以说是大自然之音乐,殊不知蟋蟀鸣叫的频率与气温有着很大的关系,我们可以用一个一次函数来表示:C = 4 t – 160。其中 C代表蟋蟀每分钟叫的次数, t 代表温度.按照这一公式,我们只要知道蟋蟀每分钟叫的次数,不用温度计就可以知道天气的温度了!

理性的数学中也存在着感性的音乐.

由一段三角函数图像出发,我们只要对它进行适当的分段,形成适当的小节, 并在曲线上选取适当的点作为音符的位置所在,那么就可以作出一节节的乐曲. 由此可见,我们不仅能像匈牙利作曲家贝拉 .巴托克那样利用黄金分割来作曲,而且也可以从纯粹的函数图像出发来作曲. 这正是数学家约瑟夫.傅里叶的后继工作,也是其工作的逆过程. 其中最典型的代表人物就是20 世纪20 年代的哥伦比亚大学的数学和音乐教授约瑟夫 .希林格(JosephSchillinger) ,他曾经把纽约时报的一条起伏不定的商务曲线描述在坐标纸上,然后把这条曲线的各个基本段按照适当的、和谐的比例和间隔转变为乐曲,最后在乐器上进行演奏, 结果发现这竟然是一首曲调优美、与巴赫的音乐作品极为相似的乐曲[2] !这位教授甚至认为,根据一套准则,所有的音乐杰作都可以转变为数学公式. 他的学生乔治 .格什温(George Gershwin) 更是推陈出新, 创建了一套用数学作曲的系统, 据说着名歌剧《波吉与贝丝》(Porgy and Bess) 就是他使用这样的一套系统创作的.

因而我们说, 音乐中出现数学、数学中存在音乐并不是一种偶然,而是数学和音乐融和贯通于一体的一种体现. 我们知道音乐通过演奏出一串串音符而把人的喜怒哀乐或对大自然、人生的态度等表现出来,即音乐抒发人们的情感, 是对人们自己内心世界的反映和对客观世界的感触,因而它是用来描述客观世界的,只不过是以一种感性的或者说是更具有个人主体色彩的方式来进行. 而数学是以一种理性的、抽象的方式来描述世界,使人类对世界有一个客观的、科学的理解和认识, 并通过一些简洁、优美、和谐的公式来表现大自然. 因此可以说数学和音乐都是用来描述世界的,只是描述方式有所不同,但最终目的都是为人类更好地生存和发展服务,于是它们之间存在着内在的联系应该是一件自然而然的事.

既然数学与音乐有如此美妙的联系,为何不让我们沉浸在《梁祝》优美动听的旋律中或置身于昆虫啁啾鸣叫的田野里静下心来思考数学与音乐的内在联系呢 ?为何不让我们在铮铮琵琶声中或令人激动的交响曲中充满信心地对它们的内在联系继续探索呢 ?

上面,我们提供了一些数学与音乐联系的素材,如何将这些素材“加工”成为“数学教育”的内容呢?我们提出几个问题仅供教材编写者和在一线工作的教师思考.

1) 如何将这样的素材经过加工渗透到数学教学和数学教材中 ?

2) 能否把这些素材编写成为“科普报告”, 在课外活动中,向音乐和数学爱好者报告,调查,了解,思考这样的报告对学生的影响以及学生对这样的报告的反映.
若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。

乐谱的书写是表现数学对音乐的影响的第一个显着的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似——不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。

除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。

毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。

你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=kx形式的方程描述,式中k>0。一个例子是y=2x。它的坐标图如下。

不管是弦乐器还是由空气柱发声的管乐器,它们的结构都反映出一条指数曲线的形状。

19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。

傅里叶的发现使声音的这三个性质可以在图形上清楚地表示出来。音高与曲线的频率有关,音量和音质分别与周期函数①的振幅和形状有关。

如果不了解音乐的数学,在计算机对于音乐创作和乐器设计的应用方面就不可能有进展。数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的。许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较。电子音乐复制的保真度也与周期曲线密切相关。音乐家和数学家将继续在音乐的产生和复制方面发挥同等重要的作用。

上图表示一根弦的分段振动和整体振动。最长的振动决定音高,较小的振动则产生泛音。

①周期函数即以等长区间重复着形状的函数。

㈦ 数学与音乐之间的详细联系

音乐中的时值ration,节拍,频率,都和数学有关。听过一个讲座,讲到一个八度中,哆来迷……各个音质好像与1,根号2,根号3,……有关系,时代久远,不太记得具体是怎样的了。

㈧ 为什么说音乐和数学有关系

希望这篇文章能够给你帮助!~^-^~
500 年前的一天,古希腊哲学家毕达哥拉斯外出散步,经过一家铁匠铺,发现里面传出的打铁声响,要比别的铁匠铺更加协调、悦耳。他走进铺子,量了又量铁锤和铁砧的大小,发现了一个规律,音响的和谐与发声体体积的一定比例有关。尔后,他又在琴弦上做试验,进一步发现只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1:2产生八度,2:3产生五度,3:4产生四度等等。就这样,毕达哥拉斯在世界上第一次发现了音乐和数学的联系。他继而发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。千百年来,研究音乐和数学的关系在西方一直是一个热门的课题,从古希腊毕达哥拉斯学派到现代的宇宙学家和计算机科学家,都或多或少受到“整个宇宙即是和声和数”的观念的影响,开普勒、伽利略、欧拉、傅立叶、哈代等人都潜心研究过音乐与数学的关系。数学几何与哲学相契携行,渗进西方人的全部精神生活,透入到一切艺术领域而成为西方艺术的一大特色。圣奥古斯汀更留下“数还可以把世界转化为和我们心灵相通的音乐”的名言。现代作曲家巴托克、勋伯格、凯奇等人都对音乐与数学的结合进行大胆的实验。希腊作曲家克赛纳基斯(1933~)创立“算法音乐”,以数学方法代替音乐思维,创作过程也即演算过程,作品名称类乎数学公式,如《 S+/10-1.080262 》为10件乐器而作,是1962年2月8日算出来的。马卡黑尔发展了施托克豪森的“图表音乐”(读和看的音乐)的思想,以几何图形的轮转方式作出“几何音乐”。
数学是研究现实世界空间形式的数量关系的一门科学,它早已从一门计数的学问变成一门形式符号体系的学问。符号的使用使数学具有高度的抽象。而音乐则是研究现实世界音响形式及对其控制的艺术。它同样使用符号体系,是所有艺术中最抽象的艺术。数学给人的印象是单调、枯燥、冷漠,而音乐则是丰富、有趣,充溢着感情及幻想。表面看,音乐与数学是“绝缘”的,风马牛不相及,其实不然。德国着名哲学家、数学家莱布尼茨曾说过:“音乐,就它的基础来说,是数学的;就它的出现来说,是直觉的。”而爱因斯坦说得更为风趣:“我们这个世界可以由音乐的音符组成也可以由数学公式组成。”数学是以数字为基本符号的排列组合,它是对事物在量上的抽象,并通过种种公式,揭示出客观世界的内在规律:而音乐是以音符为基本符号加以排列组合,它是对自然音响的抽象,并通过联系着这些符号的文法对它们进行组织安排,概括我们主观世界的各种活动罢了,正是在抽象这一点上将音乐与数学连结在一起,它们都是通过有限去反映和把握无限。
数学和音乐位于人类精神的两个极端,一个人全部创造性的精神活动就在这两个对立点的范围之内展开,而人类在科学和艺术领域中所创造出来的一切都分布在这两者之间。音乐和数学正是抽象王国中盛开的瑰丽之花。有了这两朵花,就可以把握人类文明所创造的精神财富。被称为数论之祖的希腊哲学家、数学家毕达哥拉斯认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。”世界上哪里有数,哪里就有美。数学像音乐及其它艺术能唤起人们的审美感觉和审美情趣。在数学家创造活动中,同样有情感、意志、信念、冀望等审美因素参与,数学家创造的概念、公理、定理、公式、法则如同所有的艺术形式如诗歌、音乐、绘画、雕塑、戏剧、电影一样,可以使人动情陶醉,并从中获得美的享受。

㈨ 音乐与数学之间的关系是怎样体现的二者又是如何相互影响的

古希腊时期关于音乐和比例之间的关系,题主自己也在问题描述中说到了,我就不说了。其实早期的古希腊包括中世纪时期的作曲家和理论家,都是被当做科学家来看待的。早期的音乐大概有两个大的分类,"music as theory"和"music as practice“,前者从纯粹的理论方面来研究音乐,后者是从表演方法的角度来研究。前者的研究,很多都是和数学重合的。

另外,从很多音乐创作技法和观念上来说,也是和数学有紧密联系的。比如早期音乐中时值最开始是以三等分来划分,后来才发展出两等分;以及各个模仿声部之间的比例的确定(早起音乐是没有我们今天乐谱上的小节线的,所以,音与音之间的时值比例在那时是一个更本质的音乐理论和创作元素);早期对八度、五度的运用,到逐渐加入三度和六度的过程,以及一直避免三全音的观念;音乐高潮放在黄金分割点上的技法;另外,一个实际的音乐作品的例子是Dufay的Nuper rosarum flores. 这部献给佛罗伦萨大教堂的委约作品,其音乐结构中包含了各种影射教堂建筑结构的数学比例,比如:talea的6:4:2:3的比例就是教堂圆顶的nave, transept, apse和高度(实在不知道怎么翻译-_-)的比例等等。

巴洛克时期发展成熟的各种复调手法,从某种程度上来说也就是数字的游戏。比如对主题的倒影,逆行和倒影逆行。

整个巴洛克时期、古典时期和浪漫主义时期通用的功能和声,也是和数学模式紧密相关的。比如V-I(i)就能确立一个新调,或者传统的转调都是在近关系调之间转,或者模进中的“首调模进”和“变调模进”的区别在哪(音阶不变或者音程不变),本质上都是长久以来从一个数学的逻辑推导出来的。

20世纪初,勋伯格打破传统调性体系后,不论是自由无调性还是序列音乐,还是再往后一点的octatonic音乐,都是建立在”音集“(set或者collection)理论上的。这个”音集“,就是把一个音高组合的材料数字化,然后再去用各种方式进行变形和”变奏“来发展。另外,不论是十二音的完整matrix,还是octatonic的音阶的移位,还是梅西安自己的有限移位调式,只要涉及到调式或者音阶的移位(transposition), 那都是和数学紧密相关的。另外一些音乐创作手法比如新复杂主义,根本性的构思就在于更加多变的音符时值比例,乐谱都是这样的:

再到后来,当电子音乐发展起来以后,很多电子音乐”创作“的软件或程序,其本身就是一种编程行为而不是传统的"音乐创作”思维了,比如Max.

总结一下来说,只要是以音程和音阶及其移位作为基本的音乐理论基础和创作素材的音乐作品,都是和数学思维紧密相关的。

㈩ 音乐和数学的联系有哪些

从古至今,音乐和数学一直都被联系在一起。中世纪时期,算术、几何和音乐都包括在教育课程之中。而今天,随着计算机技术的不断发展,这条纽带正在不断地绵延下去。

数学对音乐第一个的显着影响就是表现在乐谱的书写上。在乐稿上,我们可以看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似──不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。若将一件音乐作品加以分析,就可以看到每一小节都会使用不同长度的音符以构成规定的拍数。

除了乐谱与数学有着明显的联系外,音乐还与数学的比率、指数曲线、周期函数等有着密切的联系,同时与计算机科学也有紧密联系。

在公元前585至公元前400年间,毕达哥拉斯学派最先用比率将音乐与数学联系了起来。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的──事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。这就说明在拨弦时之所以能够产生整个音阶,正是因为弦的长度是按整数比增加的。

也许很多人都不知道大型钢琴的形状是如何制造出来的。实际上许多乐器的形状和结构都与各种数学概念有一定的关系。指数函数和指数曲线就是这样的概念。指数曲线是通过y=kx的方程形式进行描述的,方程式中k>0。举一个简单的例子,y=2x,它的坐标图如下。

无论是弦乐器还是管乐器,它们的形状和结构都能反映出一条指数曲线的形状。19世纪数学家约翰?傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声──器乐和声乐──都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。音高与曲线的频率有关,音量和音质分别与周期函数①的振幅和形状有关。傅里叶的这一发现使声音的三个性质音高、音量和音质分别可以在图形上清楚地表示出来。

如果对音乐中的数学不够了解,那么计算机在对音乐创作和乐器设计的应用方面就不可能有这么大的进展。数学发现,具体地说即周期函数,在乐器的现代设计和声控计算机的设计方面是必不可少的。许多乐器制造者把他们的产品的周期声音曲线与这些乐器的理想曲线相比较。电子音乐复制的保真度也与周期曲线密切相关。在音乐的产生和发展上,音乐家和数学家发挥着同等重要的作用。

该图表示的是一根弦的分段振动和整体振动,最长的振动决定着音高,较小的振动则会产生泛音。

注释:①周期函数就是以等长区间重复着形状的函数,如下图所示。

阅读全文

与数学和音乐如何联系电话相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1362
华为手机家人共享如何查看地理位置 浏览:1053
一氧化碳还原氧化铝化学方程式怎么配平 浏览:893
数学c什么意思是什么意思是什么 浏览:1420
中考初中地理如何补 浏览:1311
360浏览器历史在哪里下载迅雷下载 浏览:711
数学奥数卡怎么办 浏览:1401
如何回答地理是什么 浏览:1034
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1493
二年级上册数学框框怎么填 浏览:1712
西安瑞禧生物科技有限公司怎么样 浏览:999
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1665
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1070