Ⅰ 数学,以下领域的名着有哪些
以上回答都不能令人满意。
树业有专攻,建议分别问。
Ⅱ 在数学领域,你知道它涉及到哪些领域吗
无论是古今中外,数学一直是一个研究非常广泛的科学领域,数学也贯穿于各个科学方面。对于科学家来说,数学是研究各个科学领域必不可少的基础理论知识,而对于我们来说,从小便会接触到数学的领域学习。数学领域如此广泛,那么在数学中又有哪些着名的领域呢?
应用数学数学在生活和科研领域应用都十分广泛,数学主要是解决科学和工业等方面的问题,应用数学中含有统计学,概率论等领域。用数值分析的方法,在各领域进行数学数据计算与统计,并利用这些数据对现有情况进行分析、实验和观察。相较于人力计算而言,应用数学的应用会更加的准确,误差也会更小。
Ⅲ 数学当中的有哪些领域
纯数学的话,代数,几何和分析是三大分支,不过分析比代数和几何出现晚多了。小朋友的话告诉他们一点具体的例子吧,像古希腊的数学,尤其是一些几何问题,还有古典的概率问题,或者运筹学策略论里面也有很多有趣的例子。还有逻辑推理,悖论。我在小学时候曾经有幸接触到一些有趣的问题,对数学的兴趣就是从那里开始的。
Ⅳ 数学中的领域概念
那么,数学家究竟都在研究什么呢?或者说数学是由哪些部分组成的?传统上,我们可以将数学分为两大类:研究数学本身的纯数学和应用于解决现实问题的应用数学。但是这种分类法并不十分清晰,许多领域起初是按照纯数学发展的,但后来却发现了意想不到的应用。许多领域之间也有着非常紧密的关系,因此,如果要精确地为数学分类的话,应该是一个复杂的网络。
而在本文中,我们将会带领读者简单地了解数学的五大部分:数学基础、代数学、分析学、几何学和应用数学。
1.数学基础
数学基础研究的是逻辑或集合论中的问题,它们是数学的语言。逻辑与集合论领域思考的是数学本身的执行框架。在某种程度上,它研究的是证明与数学现实的本质,与哲学接近。
数理逻辑和基础(Mathematical logic and foundations)
数理逻辑是这一部分的核心,但是对逻辑法则的良好理解产生于它们第一次被使用之后。除了在计算机科学、哲学和数学中正式地使用了基础的命题逻辑之外,这一领域还涵盖了普通逻辑和证明论,最终形成了模型论。在此,一些着名的结果包括哥德尔不完全性定理以及与递归论相关的丘奇论题。
2.代数学
代数是对计数、算术、代数运算和对称性的一些关键的概念进行提炼而发展的。通常来说,这些领域仅通过几个公理就可定义它们的研究对象,然后再考虑这些对象的示例、结构和应用。其他非常偏代数的领域包括代数拓扑、信息与通信,以及数值分析。
数论(Number theory)
数论是纯数学中最古老、也是最庞大的分支之一。显然,它关心的是与数字有关的问题,这通常是整数或有理数(分数)。除了涉及到全等性、可除性、素数等基本主题之外,数论现在还包括对环与数域的非常偏代数的研究;还有用于渐近估计和特殊函数的分析方法和几何主题;除此之外,它与密码学、数学逻辑甚至是实验科学之间都存在着重要的联系。
群论(Group theory)
群论研究的是那些定义了可逆结合的“乘积”运算的集合。这包括了其他数学对象的对称集合,使群论在所有其他数学中占有一席之地。有限群也许是最容易被理解的,但矩阵群和几何图形的对称性同样也是群的中心示例。
Ⅳ 关于数学,你知道它涉及到哪些领域吗
引言:关于数学,你知道它涉及到哪些领域吗?下面一起来和小编了解一下吧!
三、核心领域
算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
Ⅵ 数学探究的领域有哪些
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 00数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 00当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构 00许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 00空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与逻辑 00为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”0 00集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 00数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
Ⅶ 数学研究生有哪些研究方向 详细 谢谢!
1、基础数学。基础数学是数学科学的核心。它不仅是其它应用性数学分支的基础,而且也为自然科学、技术科学及社会科学提供必不可少的语言、工具和方法。微分几何、数学物理、偏微分方程等都属于基础数学范畴。
2、计算数学。研究方向:工程问题数值方法、发展方程与动力系统的数值方法、数值逼近与数字图像处理、计算机图形学与计算机软件、光学与电磁学中的数学问题等。
3、概率和统计。是本世纪迅速发展的学科,研究各种随机现象的本质与内在规律性以及自然科学、社会科学等各个学科中各种类型数据的科学的综合处理及统计推断方法。随着人类社会各种体系的日益庞大、复杂、精密,计算机的广泛使用,概率统计的重要性将越来越大。
4、应用数学。应用数学主要是应用于两个领域,一是计算机,随着计算机的飞速发展,需要一大批懂数学的软件工程师做相应的数据库的开发;二是经济学,现在的经济学有很多都需要用非常专业的数学进行分析,应用数学有很多相关课程本身设计就是以经济学实例为基础的。
注意事项:
不是所有专业都有学硕和专硕。数学方面的专业都是学硕,相关专硕只有教育硕士,即学科教学(数学)。
如果相当老师则建议报考专硕,毕竟是侧重教学实践。当然,报考数学的课程与教学论也可以。不好简单说哪个好就业,因为现在就业都是竞争性,关键看自己的机会和能力。
Ⅷ 数学研究哪些领域
数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。
Ⅸ 数学有几个领域分类(比如函数,几何此类的分法)
现代数学的基本分支
逻辑及集合论
作为数学公理化的基础。
代表人物:康托尔、希尔伯特。
代数学
包括线性代数、群论、伽罗瓦理论、范畴论。
代表人物:阿贝尔、伽罗瓦、格罗滕迪克。
分析学
包括实分析、复分析、泛函分析,以至在偏微分方程上的应用。
代表人物:牛顿、莱布尼兹、柯西、魏尔施特拉斯、勒贝格。
拓朴学及几何学
包括微分几何学、非欧几何、代数拓扑。
代表人物:高斯、黎曼、庞加莱、陈省身。
机率论及随机数学
代表人物:白努利 高斯
应用数学
包括运筹学、信息论等
Ⅹ 数学在各领域中的运用
分析学、代数学、几何学、概率论、物理学、数学模型(数学实验)、计算机基础、数值方法、数学史等
储蓄、保险、纳税是最常见的有关理财方面的数学问题
生活中商品促销满xx送xx
数学与日常生活是两条互相交织的线,这一说法是45岁的印度数学家高塔姆·慕克吉在不久前的国际数学家大会上提出的。大约3500名专家出席了这次大会,就数学的现状和前景进行了讨论,并说明了数学如何影响人们的日常生活。
——从恒温器到因特网搜索引擎。如果将取暖器的恒温指数确定为20摄氏度,机器首先要加热使室温上升到20摄氏度以上,然后停止工作直到室温下降至20摄氏度以下,接着重新开始加热。马德里自治大学教授恩里克·苏亚苏亚指出:“何时开始加热及何时停止加热不是随意决定的,需要用数学方程式进行精确计算。”这些方程式在维持光盘运转速度或确定何时给地下蓄水池添水等问题上都得到运用。
苏亚苏亚说:“人们习惯于认为事物是单独运行的,但实际上它们背后另有促使它们运行的因素。”例如,在因特网上用搜索引擎寻找一个单词,结果并非是偶然得到的。他说:“在数学家眼里,网络就像是放在某个平面上的无数玻璃球,必须找到你需要的球然后把它们分类,而这个过程是通过计算所有变量的算式进行的。”
——自行车头盔和节能汽车。最近几年自行车头盔的前半部变得越来越圆,后半部则更像鸟嘴。这一变化不是出于美学考虑,而是根据旨在让运动员获得更好成绩的空气动力学原理。工程师通过不同方程式模拟固体在空气中的运动,直到得到最佳设计数据。飞机、汽车和轮船的设计都需要使用方程式,以达到更快、更耐用和更省油的目的。
——决策和管理级别。马德里卡洛斯三世大学教授安赫尔·桑切斯说,在企业中,通过数学可以了解员工的人际关系情况,如哪位职员人际关系最好、谁的信息最全面等。数学家通过数学定理对员工的电子邮件记录进行计算得出结论。
数学在社会学中的应用也非常广泛,在统计学中更是如此。它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口采取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险。
在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”(