❶ 请问高等数学中“dx”和“dy”的那个“d”是什么意思
d:没有意义,可以理解为微分符号,后跟微分变量.如d(x^2)表示函数x^2的微分
dx:其一、可以理解为对于变量x的微分;其二、由于x通常作为自变量,因此也可以理解为对自变量x的微分(即对x轴的微分量)
d/dx:没有意义,可以理解为某个函数对于变量x的导数(也叫微商,即微分的商),后跟微分函数.如:(d/dx)(x^2)表示函数x^2对于变量x的导数
dy/dx:表示关于x的函数y对自变量x的导数,再不会引起混淆的前提下也可以表示为y
❷ 高数中“d”、“dx”分别是什么意思“dlnx”和“dx”有什么区别
d表示积分,dx表示积分变量,即x是f中要进行积分的那个变量。
dlnx和dx表示含义不同:
1、dlnx表示对lnx整体进行积分。
1、dx表示对x进行积分。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
(2)数学分析中D表示什么扩展阅读:
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上的积分记作:
与区域D对应,是相应积分域中的微分元。
❸ 微积分中的d是什么含义啊
1675年莱布尼兹分别引入“dx”及“dy”以表示x和y的微分(differentials),始见于他在1684年出版的书中,这符号一直沿用至今。
微分符号d取英文differential,differentiation的首个字母(difference有差距,差额的意思),其中与微分概念及符号d相关的英文单词有divide,decrease,delta等.另外,符号D又叫微分算子。
(3)数学分析中D表示什么扩展阅读:
一、微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
二、积分相关
1、定积分和不定积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x)+C]'=f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,而牛顿和莱布尼茨则使两者产生了紧密的联系(详见牛顿-莱布尼茨公式)。
2、常微分方程与偏微分方程
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。
❹ 小学数学几何中d代表圆的什么
小学数学几何中d代表圆的直径。
直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离
(4)数学分析中D表示什么扩展阅读
直径的性质
性质一:在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2。
性质二:在同一个圆中直径是最长的弦。
性质三:直径所在的直线是圆的对称轴。
性质四:直径的两个端点在圆上,圆心是直径的中点。
❺ 在数学中r表示什么d表示什么
这个字母可以代表很多意义,一般来说r代表半径,d代表直径或者距离
❻ 数学D表示什么数集
D Domain代表所规定函数的定义域
此外有N*或N+:正整数集(非负整数集内排除0的集合).Z:整数集(全体整数的集合).Q:有理数集(全体有理数的集合).R:实数集(全体实数的集合)
转载自
❼ 请问高等数学中dx dy的那个d是什么意思
高等数学中dx dy的那个d意思是微分。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变)。
而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
推导:
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X)。
❽ d在数学中表示什么
在几何中表示圆的直径,也可以表示未知数或参数。还可以表示对一个函数进行微分。(dy=f'(x)dx)
❾ 高数中的那个“d”是什么意思比如物理上的“d(s)/d(t)”怎么解读
高数中的“d”是微分的意思。
物理中的“d(s)/d(t)”:路程s对时间t的导数,也是s的微分与t的微分之商。
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
(9)数学分析中D表示什么扩展阅读:
微分应用:
1、我们知道,曲线上一点的法线和那一点的切线互相垂直,微分可以求出切线的斜率,自然也可以求出法线的斜率。
2、假设函数y=f(x)的图象为曲线,且曲线上有一点(x1,y1),那么根据切线斜率的求法,就可以得出该点切线的斜率m:m=dy/dx在(x1,y1)的值,所以该切线的方程式为:y-y1=m(x-x1)。由于法线与切线互相垂直,法线的斜率为-1/m且它的方程式为:y-y1=(-1/m)(x-x1)
3、增函数与减函数
微分是一个鉴别函数(在指定定义域内)为增函数或减函数的有效方法。
鉴别方法:dy/dx与0进行比较,dy/dx大于0时,说明dx增加为正值时,dy增加为正值,所以函数为增函数;dy/dx小于0时,说明dx增加为正值时,dy增加为负值,所以函数为减函数。
4、变化的速率
微分在日常生活中的应用,就是求出非线性变化中某一时间点特定指标的变化。
在t=3时,我们想知道此时水加入的速率,于是我们算出dV/dt=2/(t+1)^2,代入t=3后得出dV/dt=1/8。
所以我们可以得出在加水开始3秒时,水箱里的水的体积以每秒1/8升的速率增加。
❿ 数学导数中d的含义是什么(dy/dx )
解答:
搞清两个概念就能理解d的含义了。
1、增量的概念:
Δx = x2 - x1,Δy = y2 - y1
这里的Δ就是增量的意思,只要是后面的量减前面的量,无论正负都叫增量。
2、无限小的概念:
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,
x与a的差值无限趋向于0,我们就说a是x的极限。
这个差值,我们称它为“无穷小”,它是一个越来越小的过程,一个无限趋
向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
3、Δ一方面表示增量的概念,如果x1与x2差距很小,这个小是有限的小。只要
写得出来,无论多少位小数点,只要你写得出,只要你的笔一停,都是有限的小。
当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2
的差距无止境的趋近于0。这时我们写成dx,也就是说,Δx是有限小的量,
dx是无限小的量。
4、d的来源,本来是 difference = 差距。当此差距无止境的趋向于0时,演变
为 differentiation, 就变成了无限小的意思,称为“微分”。
“微分”是一个过程,是无止境的“分割”,无止境的“区分”的过程。
5、Δy/Δx 表示的一条割线的斜率,也可以表示一条切线的斜率;
dy/dx 表示的是当Δx趋近于0时的Δy/Δx,记为dy/dx,是曲线上任意一点的切线
的斜率。
这方面的细细斟酌是非常值得的,要全部写出,就是一本《数学分析》,也就是一本厚厚的《微积分》了。楼主若想仔细研究,有任何问题,请Hi我,我为你详细解释。