Ⅰ 1浅谈小学数学教学中如何培养学生数学思维能力
一、激发学生思维动机
动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机是培养其思维能力的关键因素。
教师如何才能激发学生思维动机呢?这就要求教师在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。
例如:在教学根据实际情况用“进一法”和“去尾法”取商的近似数的应用题时,先出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要几个瓶?再让学生读题,分析解题思路。当学生回答出求需要准备几个瓶,就是看2.5千克里有几个0.4千克时,我先让学生猜一猜需要几个瓶,然后让学生独立计算出结果。算出结果为6.25,我问学生:“按‘四舍无入’法我们准备6个瓶子可以吗?”学生回答说“不可以。”
我又问:“为什么?”学生都知道需要再准备一个瓶子装剩下的0.1千克油,所以需要准备7个瓶子才行。最后让学生验证自己的猜想,老师并告诉:这种根据实际情况取近似数的方法叫“进一法”。随后用同样的方法教学了“去尾法”。由于这些例题都是生活中遇到的问题,学生容易理解掌握。这样也引发了学生探求新知的思维动机。
这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
二、理清学生思维脉络
认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。
1.引导学生抓住思维的起始点
数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。
2.引导学生抓住思维的转折点
学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。抓住转折点,有利于克服学生的思维障碍,有利于发散思维的培养。
三、在数学教学中培养学生的思维批判能力
没有批判就没有创新。因此,批判性思维也是思维品质的一个重要方面。设计些陷阱式的思维问题,能培养学生的批判思维能力。例如:在教学中我们经常看到这样的现象,当一个问题正面学习完以后,仅有大约百分之六十的学生基本掌握,有的学生因用错了概念、法则、公式、定理而把题做错。因此,应加强从反面培养学生的思维批判能力。在教学实践中,当讲完某一数学知识后,我故意设陷阱给学生,创设下列情境:一是使学生欲言而不能,心欲求而不得;二是诱使学生“上当”“中计”。经过分析批判后才恍然大悟。这种对事物的认识正确程度是正面培养所不能达到的。
四、教师要设计好练习题培养学生思维能力
1 .培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。
2.设计练习题要有针对性,要根据培养目标来进行设计
例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的'能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。(
)”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
3.设计一题多变题,培养学生的思维能力小学数学知识的结构,都是由浅入深,由易到难,由简单到复杂的。如果教师在教学过程中依照知识的内在联系,适当地运用“一题多变”,可以防止学生的认识局限在所学的例题里,还可以避免解题的思路来束缚原有的路子,从而增强学生解题的应变能力。
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。通过练习,学生的思维能力得到了进一步提高。
Ⅱ 怎样培养学生的数学思维能力
教育家赞可夫指出:"在各科教学中要始终注意发展学生的逻辑思维,培养学生思维的灵活性和创造性。"在数学教学过程中,教师要特别重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯,让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。
一、善于运用启发法和发现法,启发学生思维的积极性
如教学义务教育十一册教材中"圆的认识"一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察,说出在圆纸片上看到了什么。学生精力陡然集中,都想看看圆纸片上有什么。一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍爱鼓舞,纷纷发言:圆面上所有折痕相交于一点,折痕两旁的图形完全重合。这时老师让学生打开课本,看一看交点叫什么,折痕叫什么。学生很快找到了答案并熟记。要学习在同一圆中直径和半径的关系了,老师让学生拿出尺子量一量自己手中的圆纸片和同学手中的圆纸片的直径和半径,启发学生:又发现了什么?学生很快得出结论。要画圆了,老师还是不讲画法,让学生先去画,满足他们操作圆规的好奇心,让学生自己去发现画圆的方法和步骤。整节课,学生的思维都处于兴奋状态之中,人人有动手操作、用眼观察、动口说理、动脑思维的机会,学生自己观察发现问题,积极探索、得出结论,教学效果好。
二、精心设计教学内容,培养学生的求异思维
对于小学生来说,既要注意培养他们不盲从、喜欢质疑、打破框框、大胆发表自己意见的品质,又要培养他们敢于求"异",发展他们的求异思维,进而养成独立思考、独立解决问题的习惯。如:一位教师在教学"乘法意义的运用"一课时,她出示了这样一道加法题:9+9+9+5+9=?让学生用简便方法计算。于是一个学生提出了9×4+5的方法,而另一个学生则提出了"新方案",建议用9×5-4的方法解。这个学生的思维很有创见,这个方案是他自己发现的。在他的思维活动中,他"看见了"一个实际并不存在的9,他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证:9-4才是原题中实际存在的5。对于这种创造性思维的闪现,教师要加倍珍惜和爱护。
三、利用一题多解,培养学生的"立体思维"模式
如:义务教育十二册教材中的这样一道应用题:"一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行30千米。驶回时逆风,每小时行驶的路程是顺风时的。这艘轮船最多驶出多远就应往回驶了?"老师要求学生用几种方法解答,并说出解题思路。
解这个算式,得这艘轮船最多驶出80千米就应往回驶了。"这个同学利用的是类比思维方式,他是从要解决的问题出发,联想与它类似的一个熟悉的问题即工程问题。用熟悉的问题的解法来思考解答所要解决的问题,这种创造思维的火花感染了全班的每一位同学。
在数学教学中,教师要特别注意培养学生根据题中具体条件自觉、灵活地运用数学方法,通过变换角度思考问题,就可以发现新方法,制定新策略。长期坚持这样的训练,学生一定能产生浓厚的学习数学、运用数学的兴趣。让我们给学生一片广阔的天地,给他们一个自主的空间,让他们乐学、会学、善学,让他们的数学思维能力在课堂学习中得到充分的发展。
Ⅲ 如何培养小学生的数学思维能力
真实的,有趣的数学故事
具体到3-6岁孩子的数学启蒙操作层面,首先是我们选取了20个主题,主要有两类,一类是贴近儿童日常生活的,比如食物运动汽车等;另一类是儿童感兴趣的好奇的神秘的,比如恐龙宇宙科学等。然后每个主题下创作了不同的数学故事,通过故事来了解真实的世界,用数学的眼光看世界。这些故事不仅仅包含数学知识,还包含了通识教育知识,比如在《可以吃的地球》这个故事中,通过制作蛋糕来了解地球的结构组成,将球体结构和地球的知识融合在了一起。在《世界上有多少只虎鲸》中,将神秘的虎鲸与对数量的认知结合在一起。所有的数学故事都来自于真实的世界,在不同的情境中使用数学。
进阶的,开放式问题
而且在每个故事后面设计了六个开放式问题,分成三个难度等级,分别对应不同的年龄段,保证3-6岁的孩子都能参与进来。其中三个问题属于数学层面,包含了数量、计算、几何、推理方面的核心概念;三个问题属于语言层面,从获取信息,解释概念,给出观点三个层次锻炼批判性思维,语言类的问题也是与数学相关的,两者相辅相成,比如有个问题是:“内部“这个词是什么意思,任何物体都有内部吗,为什么。
系统的,游戏化课程
但光有骨架还不行,还要有相应的基础知识和能力。所以我们接下来还会设计相应的课程,每个数学知识点是一课,对应于故事问题背后的核心概念。力求简单有效,内容包括游戏素材,游戏玩法,精选习题,生活扩展。哪个问题没有思路了,不会了,可以快速找到对应的这节课程,然后通过游戏的方式学习,争取下次再遇到同类问题时能够举一反三。
Ⅳ 如何在课堂上培养学生的数学思维能力
一、调动学生内在的数学思维能力
1.设定正确恰当的学习目标,激发学生强烈的求知欲。
学习目标的设定要符合新课标,要与学生生活实际和学生思维水平的实际相适应。教学时要以学生已有的经验为基础,提供学生熟悉的生活场景,帮助学生理解各种数量关系,把握现实生活中各种事物之间的数理联系,从而激起学生探求未知世界的兴趣。例如在教学“圆的面积计算”时,我以学生已经掌握的“长方形面积的计算”知识为新旧知识的连接点,引导学生思考能否变圆为方?通过已经掌握的知识来解决新的问题,再通过课件演示,将圆分割拼成一近似长方形的物体,让学生分析这个长方形的长就是圆周长的一半,再通过推理、计算,概括出圆的面积计算公式。
2.创设生动和谐的学习情景,让学生学会科学地思考,生动有趣的学习情景,有助于学生自主学习、合作交流。
平等的师生关系、和谐的学习氛围,能让学生轻松、自信、积极、主动地参与到思维活动的每个环节中去。在教学中创设问题情景时,教师要注意引导学生的思维方向,提出的问题要富有启发性、 层次性和指向性,要有利于激活学生的思维,但又不能超越学生的认知水平,要能够积极地指向学习的中心目标。
当然除了定向思维的训练,我更加注意加强学生逆向、横向、纵向、多向思维训练。应用题教学是对学生进行思维训练的有效途径。例如:教学“根据条件提问题”,在中低年级对学生进行“提直接与条件相关的问题”的训练;在高中年级对学生进行“从多角度思考,提出根据条件能够解决的问题”的训练。学生从分步解答问题到列综合算式解答、从用一种方法解答到用多种方法解答,都体现了思维训练的渐进性。学生在教师的引导下,逐步学会了科学地思考并培养了良好的数学思维习惯。
3.开展丰富开放的课堂活动,发展学生的数学思维能力。
开展丰富开放的课堂活动,能让学生在活动中张扬个性,闪现灵动的思维火花,放飞理想的翅膀,激发思维潜能。在教学中,身为教师的我们要逐渐教给学生观察、比较、分析、综合、抽象、概括等思维方法。例如在教学“圆锥的体积计算”时,我设计了这样一个活动:提供等底等高、等底不等高、等高不等底的圆柱和圆锥,让学生分小组合作探究圆锥的体积计算方法。这样的教学活动不仅让学生发现了圆锥体积的计算方法,更深刻地理解了圆锥和圆柱之间的体积关系。当然,在课堂教学活动中培养学生的数学思维能力,并没有固定模式,需要根据学生的年龄特征、知识水平、学习内容来综合选择最恰当的方法,更不能根据设计好的教案来进行机械操作。教师要时刻关注学生的思维状况,根据师生、生生互动中的反馈信息,智慧地把握学习进程、调整学习方法,让学生在获得知识的同时,得到数学思维能力的发展。
4.设计灵活多样的作业练习,巩固、深化学生的数学思维。
作业练习的目的是要进一步巩固学生思维,但是学生通过有组织、有层次、有强度的课堂学习,头脑已经很疲惫了,所以在设计作业时,一定要注意缓解学生思维的紧张。要尽可能地设计游戏、探险、寻宝等趣味活动,增大口头训练量,减少书面训练,加强实践操作。以合作练习代替学生单独的冥思苦想,实现题型多样化、灵活化、适用化、趣味化。这样不仅能帮助学生巩固所学的知识,提高解决问题的技能技巧,更重要的是训练了学生的数学思维,发展了学生智力。同时作业设计具有针对性、层次性、综合性和创造性,要结合教学内容和学生实际,对各类学生进行针对性的训练,实现“相同起点,不同终点,分层次达标”的目标。
二、要教会学生数学思维的方法
孔子说“学而不思则罔,思而不学则殆”,恰当地说明了学与思的关系。在数学学习中要使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生正确的数学思维方式。要学生善于思考,必须重视基础知识和基本技能的学习,没有扎实的双基,数学思维能力是得不到提高的。我们要坚持启发式教学,培养学生得出规律的思维能力。
数学的教学就是要启迪学生的思维,在教学过程中教师应引导学生观察发现、总结规律并掌握规律。掌握规律,是学习上一条有效的途径,它能克服干扰,使学生的认知得到改善,从而实现思维水平发展到新高度。在例题课中要把概念、规律的形成过程作为重要的教学环节。不仅要让学生知道该怎样做,还要让学生知道为什么要这样做,是什么促使自己这样做、这样想的。这个形成过程可由教师引导学生完成,或由教师讲出自己的探寻过程。
例如,学习“商不变的性质”。首先,通过准备题使学生明确“一个数乘几可以说成把一个数扩大几倍,把一个数扩大几倍就是乘几”;“一个数除以几可以说成把一个数缩小几倍,把一个数缩小几就是除以几”。其次,引导学生观察和比较归纳出商不变的性质。笫一步:观察下面一组算式,先比较被除数和除数有什么变化,再求出商,看看有什么变化?
①12÷3=②24÷6=③120÷30= ④240÷60=
(1)用②③④式与①式比较,问:什么变了?
Ⅳ 如何在小学数学课堂中培养学生的逻辑思维能力
一.培养学生数学抽象能力
学生之所以感觉数学难学,归根结底就是学生缺乏数学抽象能力。传统教学中老师直接告诉学生抽象出的结论是什么,而没有让学生参与抽象的过程,导致死记硬背。因此教师要发挥主导地位,引导学生通过现象观察出本质,理解“抽象” ,学会归纳总结。让学生自己形成数学命题,数学思想,老师加以指正和完善,长期以来,学生会有独立自主学习知识的能力。
二.培养学生逻辑推理能力
思考人类历史上的每一次创新与发现,都离不开归纳,类比。在课堂教学中,大量使用类比,介绍人类的重大发明与数学中逻辑推理的关系,充分情景教学,培养学生学习数学的兴趣,这就要求学生大胆的发现和提出命题,他们的有些想法在不久的将来就是新的发明创造,就是定理公理;同时数学推理的精华在于演绎推理,着名的三段论构成了数学的知识体系,公理,定理,推论的证明方式大部分是三段论,演绎推理是现代文明的奠基石,在告知学生三段论的推理方式下,放手让学生去推理,掌握推理的基本形式和规则,正确书写推理的步骤,因果明确,书写具有逻辑顺序, 探索和表述论证的过程; 构建命题体系,同时学以致用,用逻辑推理解决数学和生活中的问题。
三.培养学生数学建模能力
要求学生必须做到发现和提出问题, 利用已知知识建立模型; 求解模型; 检验结果和完善模型。 通过数学建模可以培养学生动手操作能力,对知识的理解程度,达到学以致用,理论与实际相结合。体现数学来源于生活并将应用于生活,数学建模是新课标必须的要求,是理论与实际结合的重要体现,使得学生达到学以致用,在平常教学中,要求学生平时注意搜集模型和资料,注重归类,长期为数学建模准备素材,有备无患。
四.培养学生直观想象能力
学生直观想象能力的培养要通过动手来完成。如我们在立体几何,平面几何教学中,鼓励学生先自己做出模型,这样我们再展现几何图形时,学生便不再陌生,也能找到点,线,面之间的位置关系,成功避开了生硬讲解,达到事半功倍的效果。同时要求学生在生活中注重观察,百闻不如一见,在脑海中形成一些数学直观模型,感受数学之对称美,曲线美。培养学生的想象能力,能有机的结合数与形。因此在教学过程中引导学生用想象的观点看待问题,富余想象,大胆想象,让学生在课堂上放的开,不在以传统的模式约束学生,培养新时代富有想象力的人才。
五.培养学生数学运算能力
数学中的代数部分,总的来讲就是在集合上定义加减乘除及相关运算,形成代数体系和相关结论,这就要求学生理解运算,掌握运算法则,探索运算思路,设计运算程序进行运算。运算是演绎推理的重要组成部分,是人类文明传承的工具,是严谨求实的科学精神的培养手段。让学生充分感知运算的创造性,当今很多程序的实现都是大数据的处理都是在进行运算,取值,自己具有较高的运算能力,才能识别这些程序。这是时代的呼唤,顺应历史发展要求。
六.培养学生数据分析能力
当今世界云计算,大数据处理等等日新月异的成果都与数据是离不开的。如今的竞争也就变成时间的竞争,容量的竞争,优胜劣汰,这就要求学生具有数据获取,数据分析,知识构建的能力。目前我们所在的时代为多元化信息时代,这就要求人类必须有处理信息和数据的能力,才能使得计算机技术更好地服务于人类。平时让学生注重数据的搜集,整理,归类,可以培养学生在这方面的能力,从点滴做起,终将铸成大的成就。
Ⅵ 如何培养数学教学中的思维能力
一、设置问题,加强引导
众所周知,在解决的问题的过程中能够促使人进行思考,不断发散思维,小学数学的学习过程从根本来说就是一个不断进行思考和探究的思维活动。因此,在小学数学课堂上,教师要有意识的引导小学生在学习的过程中能够发现问题与提出问题,然后带领小学生学会如何分析问题和解决问题,这就是教师在小学数学教学中发展和培养小学生思维能力的一个重要过程。如果要想真正提高小学数学的教学质量,那么教师就必须加强对小学生的思维能力给予及时和适当的引导。一般来说,小学数学知识的展开都是通过提出问题,换句话说,只有在小学数学教学过程中恰当的运用问题教学,才能有效的发展和培养小学生的思维能力。教师要根据小学生的现有的知识储备,结合所学的数学知识,要有意识、有目的的设置一些数学问题,引导小学生对这些问题进行分析和思考,让小学生尝试用归纳演绎、抽象概括、比较对照和综合分析的数学方法去解决这些问题,在这个过程中,不仅可以使小学生对所学的数学知识的掌握更加灵活和牢固,也能激起学生的好奇心,能够将这些数学知识点的来龙去脉和前因后果都屡清楚,可以通过这样一个过程让小学生的数学能力和思维能力在中潜移默化中得到提升。
二、结合图形,加深理解
在小学数学教学中培养小学生的思维能力,需要帮学生理清各个数学知识之间的内在逻辑,需要采用一些灵活的数学思维教学方法。数形相结合的数学教学方法,能够让小学生在将抽象的数学知识转化为一个形象具体的数学问题的过程中增强自己的思维能力,能够将数量关系和空间结合的结合起来探究数学知识的本质,从而提高小学生分析和解决问题的能力,不断深化小学生的思维深度。因此,教师在小学数学教学过程中,在讲解数学理论知识的同时,可以充分利用一些比较直观和形象的线段和图形来表示,使得数学的学习更加清晰明了。同时,教师在教学过程中也可以将图形上的数学知识抽象为一定的数量关系,从而加深小学生对数学概念的理解,更好的指导小学生分析和解决问题。
三、联系实践,提高运用能力
数学来源于实际生活,最终也将用于实际生活。因此,在小学数学教学过程中,教师应该抽象的数学理论知识与学生的日常生活紧密联系起来,提高小学生在实际生活中运用数学的能力。培养小学生的思维能力,需要有一个良好的学习环境,让小学生能够快速融入数学学习过程中去,不断训练小学生的思维能力。教师要能够常设数学教学情境,引导小学生从实际生活获取相关的场景,通过日常的感知慢慢上升到数学的理论知识的学习。比如,在学习《长方体》时,教师切勿按照数学教材上进行授课,如果只是简单粗暴的告诉小学生长方体有几个面、几个角,每个角每个面都有什么特点的话,小学生一下子很难接受和理解。教师可以让学生联想一下家里的空调和冰箱,它们是什么形状有什么特点,以此来培养小学生思维的活力和灵活性。另外,教师也可以在数学学习的过程中,设置一些在日常生活中遇到的数学问题,鼓励学生用所学的数学知识来解决,切实提高小学生的数学能力。
Ⅶ 在小学数学教学中如何培养学生的思维能力
(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名着《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。